检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周国华[1] 吴倩[1] Zhou Guohua;Wu Qian(School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China)
机构地区:[1]西南交通大学经济管理学院,四川成都610031
出 处:《科技管理研究》2025年第2期178-187,共10页Science and Technology Management Research
基 金:国铁集团科技研究开发计划重大课题“铁路施工组织设计智能管理关键技术研究及应用”(K2022G002)。
摘 要:线性工程项目建设经常受到众多不确定性因素影响而发生中断,由此导致的进度计划的反应性调整意义重大。为应对这种不确定性,考虑活动的随机中断,研究线性工程项目进度计划优化问题。首先基于线性工程项目特征,构建考虑时间调整成本和资源波动成本的双目标反应性调度优化模型,设计考虑活动时间和空间二维特征的编码方式,并采用改进的遗传算法求解。以某铁路工程为例,结果表明该优化模型能够有效地优化反应性调整成本并均衡资源,可以帮助管理者迅速调整进度计划以应对中断的同时保持资源均衡配置;并且还通过4个随机算例指出了中断时间点对进度计划的影响,工程项目为实施过程中进度计划的调整提供方法论支撑。Linear engineering projects are often subject to numerous uncertain factors that can cause disruptions,making the reactive adjustment of progress plans highly significant.To address this uncertainty,this study considers random activity disruptions and investigates the optimization of progress plans for linear engineering projects.First,based on the characteristics of linear engineering projects,a dual-objective reactive scheduling optimization model is constructed,incorporating time adjustment costs and resource fluctuation costs,a coding method that considers the two-dimensional time-space characteristics of activities is designed,and an improved genetic algorithm is employed for solving the model.Using a railway engineering project as a case study,the research demonstrates that the model can effectively optimize reactive adjustment costs and balance resources,helping managers quickly adjust progress plans to respond to disruptions while maintaining balanced resource allocation.Additionally,four random examples are used to illustrate the impact of disruption timing on progress plans,providing methodological support for adjusting progress plans during project implementation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.94.64