机构地区:[1]河南工业大学管理学院,河南郑州450001 [2]河南农业大学文法学院,河南郑州450046 [3]生态环境部环境规划院,北京100043
出 处:《科技管理研究》2025年第3期167-176,共10页Science and Technology Management Research
基 金:教育部人文社会科学研究青年基金项目“水多重属性视角下华北平原县域农业用水效率时空分异及驱动机制”(23YJCZH215);河南省高等学校重点科研项目“科技创新支撑黄河流域生态保护和高质量发展问题研究”(24A630018)。
摘 要:提高农业碳生产率是实现农业绿色低碳发展的必由之路,亟须探究中国农业碳生产率的动态演化态势及驱动机制,以期为制定有效的农业碳减排政策提供参考。通过构建农业碳生产率提升的组态路径分析框架,选取2006—2020年中国31个省份为样本,在考虑碳排放因子区域差异的基础上,对各省份农业碳排放总量、碳生产率进行测度,并运用模糊集定性比较分析方法解析影响农业碳生产率的复杂因果机制及多元提升路径。结果表明:中国农业碳生产率整体呈上升趋势,呈东部明显高于中西部的分布格局,省域间农业碳生产率差异明显;产生高农业碳生产率的组态类型包括区域经济驱动型、农业技术驱动型、种植结构与区域经济驱动型,以及种植结构与劳动力素质驱动型;抑制农业碳生产率提升的组态类型则包括种植结构抑制型、产业结构与城镇化率抑制型以及产业结构与区域经济抑制型;种植结构一直是高农业碳生产率的核心驱动力,城镇化率和农业政策支持力度的驱动作用随时间演变有所弱化,而区域经济和劳动力素质对提升农业高碳生产率的作用有所增强。因此,需要加快调整优化种植结构,提高农业生产技术水平,同时要注重区域差异化发展。Enhancing agricultural carbon productivity is an essential pathway to achieving green and low-carbon agricultural development.It is imperative to examine the dynamic evolution trends and driving mechanisms of agricultural carbon productivity in China to provide valuable insights for formulating effective agricultural carbon reduction policies.By constructing a configuration path analysis framework for enhancing agricultural carbon productivity,this study selects 31 regions in China and the data from 2006 to 2020 as samples.Considering regional differences in carbon emission factors,the total agricultural carbon emissions and carbon productivity of each province are measured.The fuzzy-set Qualitative Comparative Analysis(fsQCA)method is employed to analyze the complex causal mechanisms and multiple improvement paths affecting agricultural carbon productivity.The results show that China's agricultural carbon productivity generally exhibits an upward trend,with a distribution pattern significantly higher in the eastern regions than that of the central and western regions,and significant regional differences in agricultural carbon productivity are observed.The configurational types that lead to high agricultural carbon productivity include the regional economic-driven type,agriculturally technology-driven type,the cropping structure and regionally economic-driven type,and the cropping structure and labor quality-driven type.On the other hand,configurational types that inhibit the improvement of agricultural carbon productivity include the cropping structure-inhibited type,industrial structure and urbanization rate-inhibited type,and industrial structure and regional economic-inhibited types.Cropping structure has consistently been a core driver of high agricultural carbon productivity,while the driving effects of urbanization rate and agricultural policy support have weakened over time.In contrast,the roles of regional economy and labor quality in enhancing high agricultural carbon productivity have strengthened.Ther
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...