检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Science,National University of Defense Technology,Changsha 410073,China
出 处:《Frontiers of Computer Science》2025年第2期43-57,共15页计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.61922087);the Huxiang Young Talents Program of Hunan Province(2021RC3070).
摘 要:Unsupervised transfer subspace learning is one of the challenging and important topics in domain adaptation,which aims to classify unlabeled target data by using source domain information.The traditional transfer subspace learning methods often impose low-rank constraints,i.e.,trace norm,to preserve data structural information of different domains.However,trace norm is only the convex surrogate to approximate the ideal low-rank constraints and may make their solutions seriously deviate from the original optimums.In addition,the traditional methods directly use the strict labels of source domain,which is difficult to deal with label noise.To solve these problems,we propose a novel nonconvex and discriminative transfer subspace learning method named NDTSL by incorporating Schatten-norm and soft label matrix.Specifically,Schatten-norm can be imposed to approximate the low-rank constraints and obtain a better lowrank representation.Then,we design and adopt soft label matrix in source domain to learn a more flexible classifier and enhance the discriminative ability of target data.Besides,due to the nonconvexity of Schatten-norm,we design an efficient alternative algorithm IALM to solve it.Finally,experimental results on several public transfer tasks demonstrate the effectiveness of NDTSL compared with several state-of-the-art methods.
关 键 词:transfer subspace learning unsupervised domain adaptation low-rank modeling nonconvex optimization
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7