检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Han ZENG Jia-Ming SUN Chun-Shu LI Zhuying LI Tong WEI
机构地区:[1]School of Computer Science and Engineering,Southeast University,Nanjing 210096,China [2]Key Laboratory of Computer Network and Information Integration,Southeast University,Nanjing 210096,China
出 处:《Frontiers of Computer Science》2025年第2期129-131,共3页计算机科学前沿(英文版)
摘 要:1 Introduction In Natural Language Processing(NLP),topic modeling is a class of methods used to analyze and explore textual corpora,i.e.,to discover the underlying topic structures from text and assign text pieces to different topics.In NLP,a topic means a set of relevant words appearing together in a particular pattern,representing some specific information.It is beneficial for tracking social media trends,constructing knowledge graphs,and analyzing writing styles.Topic modeling has always been an area of extensive research in NLP.Traditional methods like Latent Semantic Analysis(LSA)and Latent Dirichlet Allocation(LDA),based on the“bag of words”(BoW)model,often fail to grasp the semantic nuances of the text,making them less effective in contexts involving polysemy or data noise,especially when the amount of data is small.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7