机构地区:[1]中国科学院南京土壤研究所,土壤与农业可持续发展全国重点实验室,江苏南京210008 [2]中国科学院大学,北京100049 [3]江苏省农业科学院农业资源与环境研究所,江苏南京210014 [4]中国科学院地理与湖泊研究所,湖泊与流域水安全全国重点实验室,江苏南京210008
出 处:《地学前缘》2025年第3期231-247,共17页Earth Science Frontiers
基 金:国家自然科学基金项目(42277312);科学技术部科技基础资源调查专项(2022FY100202)。
摘 要:红壤在我国农业及经济社会可持续发展中占有重要地位。红壤关键带实质上是红壤区域自然和人为共同作用下由水-土-气-生-岩构成的地球表层系统。本文综述了红壤的酸化现状、红壤关键带中质子(H^(+))产生和消耗的过程与机制,以及这些过程所产生的生态环境效应。从关键带的视角,碳循环是土壤自然酸化过程中H^(+)的主要来源。大气酸沉降(H^(+)、氮、硫)和植物因生长对盐基离子(K^(+)、Na^(+)、Ca^(2+)和Mg^(2+))的净吸收而产生的H^(+)是自然生态系统下红壤中H^(+)的主要来源,但化学氮肥施用带来的氮转化过程产生的H+和植物收获带走的盐基离子是农田生态系统中红壤酸化加剧的主导因素。氮在土壤中的转化过程和H+产生过程复杂,采用氮和氧双同位素的方法,可以定量化水体中硝态氮(NO_(3)_(-)-N)的来源,从而定量不同来源氮对土壤中H+的贡献。矿物风化、阳离子交换、铁铝氧化物缓冲、硫酸根专性吸附和有机质的酸缓冲等均是红壤中存在的重要酸缓冲机制。这些过程交织在一起,不易量化单独的缓冲过程,难以准确定量红壤的酸化速率。借助矿物风化释放的盐基离子与硅的化学计量关系,可以解析不同风化程度的红壤地区H^(+)用于硅酸盐风化和盐基交换的比例,从而更好地理解不同风化程度红壤对H^(+)缓冲路径的差异。酸化不仅会改变土壤自身的物理和化学特性、活化重金属元素、引起铝毒等,还影响土壤中的微生物和植物生长,氮转化带来的NO_(3)_(-)-N迁移和深部累积会对地下水污染带来潜在的风险。质子的消耗过程可以缓解H^(+)产生所带来的生态危害。红壤区径流水保持中性,说明土壤消耗了所有输入的H^(+),目前依然具有一定的酸缓冲能力。针对以上红壤关键带的H+产生和消耗的研究现状,本文提出了对未来的研究展望,探讨了红壤关键带需要进一步深�Red soil plays an important role in the sustainable development of agriculture and socio-economy in China.The red soil critical zone is the earth’s surface system which consists of water-soil-air-life-rock under the actions of natural and human activities in the red soil region.This paper summarizes the progresses on the acidification situation of red soil,the process and mechanism of proton(H^(+))production and consumption in the red soil critical zone,as well as the ecological and environmental effects.In the critical zone,carbon cycle is the main source of H^(+)in the natural soil acidification process.Atmospheric acid deposition(H^(+),nitrogen,sulfur)and the net uptake of base cations(K^(+),Na^(+),Ca^(2+),and Mg^(2+))by plants are the main sources of H^(+)in natural ecosystems.However,H^(+)from the nitrogen transformation process caused by chemical nitrogen fertilizer and base cations carried away by plant harvest are the main reasons for the intensification of red soil acidification in farmland ecosystem.The transformation of nitrogen in soil and the production process of H^(+)are complex.The source of nitrate(NO_(3)_(-)-N)in water can be quantified by using dual isotopes of nitrogen and oxygen,so as to quantify the contribution of different sources of nitrogen to H^(+)production in soil.Mineral weathering,cation exchange,iron and aluminum oxide buffering,special adsorption of sulfate and acid buffering of organic matter are important acid buffering mechanisms in the red soil critical zone.These processes are intertwined,so it is difficult to quantify individual buffering processes and the acidification rate of red soil.Based on the stoichiometric relationship between base cations and silicon released by mineral weathering,the proportion of H^(+)used for silicate weathering and base exchange in red soil regions with different weathering degrees can be distinguished,so as to better understand the difference of buffering pathways for H^(+)in red soil with different weathering degrees.Acidification will not o
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...