Predicting Summer Precipitation in the Middle and Lower Reaches of the Yangtze River Using Winter Sea Surface Temperature Anomalies and Trends  

作  者:YANG Jian XING Wen LIU Fei 杨健;邢雯;刘飞

机构地区:[1]School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System Ministry of Education,Sun Yat-sen University,Zhuhai,Guangdong 519082 China [2]Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai,Guangdong 519082 China [3]State Key Laboratory of Tropical Oceanography(SCSIO,CAS),South China Sea Institute of Oceanology,Guangzhou 510301 China

出  处:《Journal of Tropical Meteorology》2025年第1期120-132,共13页热带气象学报(英文版)

基  金:Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004);National Natural Science Foundation of China(42175061)。

摘  要:Studying the causes of summer(June–July–August)precipitation anomalies in the middle and lower reaches of the Yangtze River(MLYR)and accurately predicting rainy season precipitation are important to society and the economy.In recent years,the sea surface temperature(SST)trend factor has been used to construct regression models for summer precipitation.In this study,through correlation analysis,winter SST anomaly predictors and the winter Central Pacific SST trend predictor(CPT)are identified as closely related to the following MLYR summer precipitation(YRSP).CPT can influence YRSP by inducing anomalous circulations over the North Pacific,guiding warm and moist air northward,and inhibiting the development of the anomalous anticyclone over the Northwest Pacific.This has improved the predictive skill of the seasonal regression model for YRSP.After incorporating the CPT,the correlation coefficient of the YRSP regression model improved by 40%,increasing from 0.45 to 0.63,and the root mean squared error decreased by 22%,from 1.15 to 0.90.

关 键 词:sea surface temperature anomalies sea surface temperature variation trend middle and lower reaches of the Yangtze River seasonal prediction 

分 类 号:P426.6[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象