检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴腾 刘金杰 WU Teng;LIU Jinjie(School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]武汉理工大学机电工程学院,湖北武汉430070
出 处:《数字制造科学》2024年第4期305-309,共5页
摘 要:针对目前数字孪生模型中人工智能算法大多以纯数据驱动的问题,采用了一种能够融合物理机理的物理信息神经网络(PINNs)算法,应用于欧拉梁的数字孪生模型构建。并以欧拉梁简支变力条件作为算例,结果表明孪生模型的求解结果与解析解的L2相对误差在4%以内,能够为分析决策提供一定的精度;最后基于Python开发了欧拉梁的可视化界面。为探索机械零部件的数字孪生及复杂装备的数字孪生技术路线提供参考价值。To address the limitation of pure data-driven approaches commonly used in current digital twin models,this study adopts a Physics-Informed Neural Networks(PINNs)algorithm that integrates physical mechanisms and applies it to the construction of a digital twin model for Euler beams.Using the simply supported Euler beam under variable force conditions as a case study,the results demonstrate that the relative L2 error between the twin model solutions and analytical solutions is within 4%,offering sufficient accuracy for analysis and decision-making.Additionally,a Python-based visualization interface for the Euler beam was developed.This study provides valuable insights for advancing digital twin technologies for mechanical components and complex equipment.
分 类 号:TV332.1[水利工程—水工结构工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66