检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张守震 姜飞[1] 郭都 李明东 王英[1] 辛政华[1] ZHANG Shou-Zhen;JIANG Fei;GUO Du;LI Ming-Dong;WANG Ying;XIN Zheng-Hua(College of Information Engineering,Suzhou University,Suzhou 234000,Anhui,China)
出 处:《兰州文理学院学报(自然科学版)》2025年第2期64-67,共4页Journal of Lanzhou University of Arts and Science(Natural Sciences)
基 金:安徽省教育厅重点科研项目(2024AH051817,2023AH052240);产学研科研项目(2022xhx301,2022xhx302,2021xhx158,2021xhx110,2022xhx126)。
摘 要:针对手语难以被普通人理解的问题,提出一种基于深度三维卷积时序神经网络算法.从全局信息和多尺度时空卷积网络模块着手,基于联系手语识别方法进行训练,并通过对语料视频模型提取特征关键帧,将关键帧的特征和手语视频的特征进行融合,构建Seq2Seq模型,降低其他动作对手语识别的影响.实验结果表明,加入关键帧后,在Transformer基础上的手语识别方式识别精度显著提高.A deep three-dimensional convolutional temporal neural network algorithm is proposed to address the difficulty of understanding sign language by ordinary people.Starting from the modules of global information and multi-scale spatiotemporal convolutional networks,training is conducted based on the method of associative sign language recognition.By extracting feature keyframes from the corpus video model,the features of keyframes are fused with those of sign language videos to construct a Seq2Seq model,reducing the impact of other actions on sign language recognition.The experimental results show that after adding keyframes,the recognition accuracy of sign language recognition based on Transformer is significantly improved.
关 键 词:三维卷积神经网络 迁移学习 关键帧 Seq2Seq模型
分 类 号:TP393.06[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.38.5