How Does Prior Distribution Affect Model Fit Indices of Bayesian Structural Equation Model?  

在线阅读下载全文

作  者:Yonglin Feng Junhao Pan 

机构地区:[1]Department of Psychology,Sun Yat-Sen University,Guangzhou,51006,China

出  处:《Fudan Journal of the Humanities and Social Sciences》2025年第1期137-173,共37页复旦人文社会科学论丛(英文版)

基  金:supported by the MOE(Ministry of Education)Project of Humanities and Social Science of China[23YJA190007];the Natural Science Foundation of Guangdong Province[2022A1515010367];the Key Research and Development Plan of Yunnan Province,China[202203AC100003].

摘  要:Bayesian structural equation model(BSEM)integrates the advantages of the Bayesian methods into the framework of structural equation modeling and ensures the identification by assigning priors with small variances.Previous studies have shown that prior specifications in BSEM influence model parameter estimation,but the impact on model fit indices is yet unknown and requires more research.As a result,two simulation studies were carried out.Normal distribution priors were specified for factor loadings,while inverse Wishart distribution priors and separation strategy priors were applied for the variance-covariance matrix of latent factors.Conditions included five sample sizes and 24 prior distribution settings.Simulation Study 1 examined the model-fitting performance of BCFI,BTLI,and BRMSEA proposed by Garnier-Villarreal and Jorgensen(Psychol Method 25(1):46-70,2020)and the PPp value.Simulation Study 2 compared the performance of BCFI,BTLI,BRMSEA,and DIC in model selection between three data generation models and three fitting models.The findings demonstrated that prior settings would affect Bayesian model fit indices in evaluating model fitting and selecting models,especially in small sample sizes.Even under a large sample size,the highly improper factor loading priors resulted in poor performance of the Bayesian model fit indices.BCFI and BTLI were less likely to reject the correct model than BRMSEA and PPp value under different prior specifications.For model selection,different prior settings would affect DIC on selecting the wrong model,and BRMSEA preferred the parsimonious model.Our results indicate that the Bayesian approximate fit indices perform better when evaluating model fitting and choosing models under the BSEM framework.

关 键 词:Prior distribution Bayesian structural equation model Model fit indices Bayesian approximate fit indices Model selection 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象