检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Psychology,Sun Yat-Sen University,Guangzhou,51006,China
出 处:《Fudan Journal of the Humanities and Social Sciences》2025年第1期137-173,共37页复旦人文社会科学论丛(英文版)
基 金:supported by the MOE(Ministry of Education)Project of Humanities and Social Science of China[23YJA190007];the Natural Science Foundation of Guangdong Province[2022A1515010367];the Key Research and Development Plan of Yunnan Province,China[202203AC100003].
摘 要:Bayesian structural equation model(BSEM)integrates the advantages of the Bayesian methods into the framework of structural equation modeling and ensures the identification by assigning priors with small variances.Previous studies have shown that prior specifications in BSEM influence model parameter estimation,but the impact on model fit indices is yet unknown and requires more research.As a result,two simulation studies were carried out.Normal distribution priors were specified for factor loadings,while inverse Wishart distribution priors and separation strategy priors were applied for the variance-covariance matrix of latent factors.Conditions included five sample sizes and 24 prior distribution settings.Simulation Study 1 examined the model-fitting performance of BCFI,BTLI,and BRMSEA proposed by Garnier-Villarreal and Jorgensen(Psychol Method 25(1):46-70,2020)and the PPp value.Simulation Study 2 compared the performance of BCFI,BTLI,BRMSEA,and DIC in model selection between three data generation models and three fitting models.The findings demonstrated that prior settings would affect Bayesian model fit indices in evaluating model fitting and selecting models,especially in small sample sizes.Even under a large sample size,the highly improper factor loading priors resulted in poor performance of the Bayesian model fit indices.BCFI and BTLI were less likely to reject the correct model than BRMSEA and PPp value under different prior specifications.For model selection,different prior settings would affect DIC on selecting the wrong model,and BRMSEA preferred the parsimonious model.Our results indicate that the Bayesian approximate fit indices perform better when evaluating model fitting and choosing models under the BSEM framework.
关 键 词:Prior distribution Bayesian structural equation model Model fit indices Bayesian approximate fit indices Model selection
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222