检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mahsa Soheil SHAMAEE Sajad Fathi HAFSHEJANI Zeinab SAEIDIAN
机构地区:[1]Department of Computer Science,Faculty of Mathematical Science,University of Kashan,Kashan 87317-53153,Iran [2]Department of Applied Mathematics,Shiraz University of Technology,Shiraz 13876-71557,Iran [3]Department of Mathematical Sciences,University of Kashan,Kashan 87317-53153,Iran
出 处:《Frontiers of Computer Science》2025年第1期109-118,共10页计算机科学前沿(英文版)
基 金:first author is partially supported by the University of Kashan(1143902/2).
摘 要:In this paper, we propose a novel warm restart technique using a new logarithmic step size for the stochastic gradient descent (SGD) approach. For smooth and non-convex functions, we establish an O(1/√T) convergence rate for the SGD. We conduct a comprehensive implementation to demonstrate the efficiency of the newly proposed step size on the FashionMinst, CIFAR10, and CIFAR100 datasets. Moreover, we compare our results with nine other existing approaches and demonstrate that the new logarithmic step size improves test accuracy by 0.9% for the CIFAR100 dataset when we utilize a convolutional neural network (CNN) model.
关 键 词:stochastic gradient descent logarithmic step size warm restart technique
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49