检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yexuan SHI Wei YU Yuanyuan ZHANG Chunbo XUE Yuxiang ZENG Zimu ZHOU Manxue GUO Lun XIN Wenjing NIE
机构地区:[1]State Key Laboratory of Complex&Critical Software Environment and Advanced Innovation Center for Future Blockchain and Privacy Computing,Beihang University,Beijing 100191,China [2]Zhongguancun Pan Connected Mobile Communication Technology Innovation and Application Research Institute,Beijing 100088,China [3]China Mobile Research Institute,Beijing 100053,China [4]School of Data Science,City University of Hong Kong,Hong Kong 999077,China
出 处:《Frontiers of Computer Science》2025年第1期167-169,共3页计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.U21A20516,62076017,and 6233000216);the Beihang University Basic Research Funding(No.YWF-22-L-531);the CCF-Huawei Populus Grove Fund(CCF-HuaweiDB202310).
摘 要:1 Introduction Federated learning has emerged as a promising par-adigm for collaborative model training that facilitates cooperation among multiple parties while ensuring data privacy[1].Successful alignment of data across parties is crucial for effective federated learning[2].This alignment involves harmonizing heterogeneous data from different parties to identify shared data for joint model training.Private set intersection(PSI)is a technique that allows the alignment of common entities between parties without revealing additional information.However,efficiently performing data alignment with PSI in federated learning[3],especially when dealing with highly unbalanced data,remains challenging due to the low efficiency.
关 键 词:ALIGNMENT dealing PARTIES
分 类 号:P20[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49