检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ming LIU Jianan PAN Zifei YAN Wangmeng ZUO Lei ZHANG
机构地区:[1]School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China [2]Department of Computing,The Hong Kong Polytechnic University,Hong Kong 999077,China
出 处:《Frontiers of Computer Science》2025年第1期171-173,共3页计算机科学前沿(英文版)
基 金:supported in part by the National Natural Science Foundation of China(Grant No.U19A2073).
摘 要:1 Introduction Recently,multiple synthetic and real-world datasets have been built to facilitate the training of deep single-image reflection removal(SIRR)models.Meanwhile,diverse testing sets are also provided with different types of reflections and scenarios.However,the non-negligible domain gaps between training and testing sets make it difficult to learn deep models generalizing well to testing images.The diversity of reflections and scenes further makes it a mission impossible to learn a single model being effective for all testing sets and real-world reflections.In this paper,we tackle these issues by learning SIRR models from a domain generalization perspective.
关 键 词:testing GENERALIZATION WHILE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49