检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Frontiers of Computer Science》2025年第1期175-177,共3页计算机科学前沿(英文版)
摘 要:1 Introduction In recent years,foundation Vision-Language Models(VLMs),such as CLIP[1],which empower zero-shot transfer to a wide variety of domains without fine-tuning,have led to a significant shift in machine learning systems.Despite the impressive capabilities,it is concerning that the VLMs are prone to inheriting biases from the uncurated datasets scraped from the Internet[2–5].We examine these biases from three perspectives.(1)Label bias,certain classes(words)appear more frequently in the pre-training data.(2)Spurious correlation,non-target features,e.g.,image background,that are correlated with labels,resulting in poor group robustness.(3)Social bias,which is a special form of spurious correlation,focuses on societal harm.Unaudited image-text pairs might contain human prejudice,e.g.,gender,ethnicity,and age,that are correlated with targets.These biases are subsequently propagated to downstream tasks,leading to biased predictions.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.66.233