Predicting the strength of fiber reinforced polymer materials externally bonded to masonry using artificial intelligent techniques  

作  者:Khalid Saqer ALOTAIBI 

机构地区:[1]Department of Civil and Construction Engineering,College of Engineering,Imam Abdulrahman Bin Faisal University,Dammam 31451,Saudi Arabia

出  处:《Frontiers of Structural and Civil Engineering》2025年第2期242-261,共20页结构与土木工程前沿(英文版)

摘  要:Fiber reinforced polymer(FRP)retrofits are widely used to strengthen structures due to their advantages such as high strength-to-weight ratio and durability.However,the bond strength between FRP and masonry is crucial for the success of these retrofits.Limited data exists on the shear bond between FRP composites and masonry substrates,necessitating the development of accurate prediction models.This study aimed to create machine learning models based on 1583 tests from 56 different experiments on FRP-masonry bond strength.The researchers identified key factors influencing failure load and developed machine learning models using three algorithms.The proposed models outperformed an existing model with up to 97%accuracy in predicting shear bond strength.These findings have significant implications for designing safer and more effective FRP retrofits in masonry structures.The study also used Sobol sensitivity analysis and SHapley Additive exPlanations(SHAP)analysis to understand the machine learning models,identifying key input features and their importance in driving predictions.This enhances model transparency and reliability for practical use.

关 键 词:fiber reinforced polymer retrofits bond strength masonry substrate shear pull out tests machine learning model 

分 类 号:TB3[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象