检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHENG Jiaming CHEN Wei LI Lun AI Bo
机构地区:[1]School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China [2]State Key Laboratory of Mobile Network and Mobile Multimedia Technology,Shenzhen 518055,China [3]ZTE Corporation,Shenzhen 518057,China
出 处:《ZTE Communications》2025年第1期3-10,共8页中兴通讯技术(英文版)
基 金:supported in part by the Natural Science Foundation of China under Grant Nos.U2468201 and 62221001;ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20240420002。
摘 要:Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions.
关 键 词:massive MIMO deep learning CSI prediction CSI feedback
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49