A Basis Function Generation Based Digital Predistortion Concurrent Neural Network Model for RF Power Amplifiers  

作  者:SHAO Jianfeng HONG Xi WANG Wenjie LIN Zeyu LI Yunhua 

机构地区:[1]Xi’an Jiaotong University,Xi’an 710049,China [2]ZTE Corporation,Shenzhen 518057,China

出  处:《ZTE Communications》2025年第1期71-77,共7页中兴通讯技术(英文版)

基  金:supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20220722010。

摘  要:This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a feedforward neural network(FNN)and a convolutional neural network(CNN).The proposed model takes the basic elements that form the bases as input,defined by the generalized memory polynomial(GMP)and dynamic deviation reduction(DDR)models.The FNN generates the basis function and its output represents the basis values,while the CNN generates weights for the corresponding bases.Through the concurrent training of FNN and CNN,the hidden layer coefficients are updated,and the complex multiplication of their outputs yields the trained in-phase/quadrature(I/Q)signals.The proposed model was trained and tested using 300 MHz and 400 MHz broadband data in an orthogonal frequency division multiplexing(OFDM)communication system.The results show that the model achieves an adjacent channel power ratio(ACPR)of less than-48 d B within a 100 MHz integral bandwidth for both the training and test datasets.

关 键 词:basis function generation digital predistortion generalized memory polynomial dynamic deviation reduction neural network 

分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象