检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶泞珲 YE Ninghui(School of Economics and Management,Jiangsu University of Science and Technology,Zhenjiang 212000,China)
机构地区:[1]江苏科技大学经济管理学院,江苏镇江212000
出 处:《江苏科技信息》2025年第6期133-136,共4页Jiangsu Science and Technology Information
摘 要:在全球金融市场中,Environmental,Social and Governance(ESG)“漂绿”现象频发,误导投资者对企业ESG表现的理解,掩盖真实风险。文章针对传统ESG评估的不足,提出一种基于深度学习的ESG“漂绿”风险识别方法,不依赖评级机构评分,直接处理原始报告。采用“同行相对漂绿得分”作为训练标签,结合TextRank和Ernie-Multi-Head Attention模型,实现了精准的风险识别。在Bloomberg和Wind ESG数据测试集上,该方法平均绝对误差为0.7014,性能优于基线模型。研究有助于投资者深入理解企业ESG绩效,推动可持续发展。In global financial markets,the phenomenon of Environmental,Social,and Governance(ESG)“greenwashing”occurs frequently,misleading investors’understanding of corporate ESG performance and obscuring real risks.To address the limitations of traditional ESG assessments,this paper proposes a deep learning-based ESG“greenwashing”risk identification method that does not rely on rating agency scores but directly processes raw reports.Using“peer-relative greenwashing scores”as training labels and combining TextRank with the Ernie-Multi-Head Attention model,the method achieves accurate risk identification.On the Bloomberg and Wind ESG datasets,the proposed method achieves a mean absolute error of 0.7014,outperforming baseline models.This research helps investors gain a deeper understanding of corporate ESG performance and promotes sustainable development.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7