检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛兆吉 李德仓 胥如迅 陈晓强 NIU Zhao-ji;LI De-cang;XU Ru-xun;CHEN Xiao-qiang(Mechatronics T&R Institute,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Engineering Technology Center for Information of Logistics&Transport Equipment,Lanzhou 730070,China;Gansu Provincial Industry Technology Center of Logistics&Transport Equipment,Lanzhou 730070,China)
机构地区:[1]兰州交通大学机电技术研究所,兰州730070 [2]甘肃省物流及运输装备信息化工程技术研究中心,兰州730070 [3]甘肃省物流与运输装备行业技术中心,兰州730070
出 处:《科学技术与工程》2025年第9期3880-3887,共8页Science Technology and Engineering
基 金:国家自然科学基金(72061021,62063013);甘肃省科技计划(21JR7RA284)。
摘 要:准确的高铁沿线风速预测是铁路灾害预警系统的基础需求,为了提升应对和处理强风灾害致突发事件的能力,提出一种基于减法平均优化(subtraction average based optimizer,SABO)算法优化长短时记忆(long short-term memory,LSTM)神经网络的高铁沿线短期风速预测方法。首先,针对风速非线性和非平稳特性,采用极小化极大(min-max,MM)方法对风速数据进行归一化处理;其次,采用SABO算法中的“-v”方法对LSTM模型的关键参数搜索寻优,并构建风速预测模型;最后,以中国宝兰高铁沿线风速采集点采集的实测风速数据为例,对模型进行有效性检验。实验结果表明:SABO算法的寻优效果更加良好,预测精度更高,所建模型的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(route mean square error,RMSE)分别仅为11.96%、1.23%和16.47%,决定系数(r-square,R^(2))为0.995。与其他模型相比,通过SABO算法优化后的LSTM神经网络在短期风速预测上具有较好的拟合效果和更高的预测精度,可为高铁沿线大风预测预警提供一种新的方法和思路。Accurate prediction of wind speed along high-speed rail lines is a fundamental requirement for railway disaster warning systems.To enhance the capability to respond to and handle sudden events caused by strong winds,a short-term wind speed prediction method based on the subtraction average based optimizer(SABO)algorithm optimized long short-term memory(LSTM)neural network was proposed.Firstly,considering the nonlinearity and non-stationarity of wind speed,the min-max(MM)method was used to normalize the wind speed data.Secondly,the“-v”method in the SABO algorithm was employed to search and optimize the key parameters of the LSTM model,constructing a wind speed prediction model.Finally,the effectiveness of the model was tested using measured wind speed data collected from wind speed collection points along the Baoji-Lanzhou high-speed railway in China.Experimental results show that the SABO algorithm's optimization effect is better,and the prediction accuracy is higher.The average absolute error(MAE),mean absolute percentage error(MAPE),and root mean square error(RMSE)of the constructed model are 11.96%,1.23%,and 16.47%,respectively,with a coefficient of determination(R^(2))of 0.995.Compared to other models,the LSTM neural network optimized by the SABO algorithm exhibits better fitting performance and higher prediction accuracy in short-term wind speed prediction,providing a new method and approach for wind prediction and warning along high-speed railway.
关 键 词:高铁 风速预测 减法平均优化算法 长短时记忆神经网络
分 类 号:U298.12[交通运输工程—交通运输规划与管理] TP301.6[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7