检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吐尔逊·买买提 孙慧 刘亚楼 TURSON Mamaiti;SUN Hui;LIU Ya-lou(College of Transportation and Logistics Engineering,Xinjiang Agricultural University,Urumqi 830052,China)
机构地区:[1]新疆农业大学交通与物流工程学院,乌鲁木齐830052
出 处:《科学技术与工程》2025年第9期3896-3904,共9页Science Technology and Engineering
摘 要:为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网络(convolutional neural network,CNN)强大的特征提取能力和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)在处理时序数据方面的优势,构建了基于CNN-BiLSTM的车辆油耗预测组合模型;然后,为提高模型预测准确性,通过Hyperband优化算法对组合模型进行优化,并将车辆油耗影响因素作为模型输入特征,对模型进行训练,实现对车辆油耗的建模和预测;最后,选取CNN、LSTM、BiLSTM、CNN-LSTM、CNN-BiLSTM作为对比模型,对Hyperband-CNN-BiLSTM预测模型效果进行评价。结果表明,相较于其他模型,Hyperband-CNN-BiLSTM模型的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean squared error,RMSE)最小,分别为0.05769和0.11925,R^(2)最大,为0.99176,模型预测效果最佳。In order to effectively predict the fuel consumption of vehicles,improve fuel economy and promote energy saving and emission reduction,a Hyperband-CNN-BiLSTM-based motor vehicle fuel consumption prediction method was proposed.Firstly,based on the vehicle operating status data and fuel consumption data collected from the actual road test,the salient factors affecting the fuel consumption of vehicles were analyzed.Secondly,combining the powerful feature extraction capability of convolutional neural network(CNN)and the advantages of bidirectional long and short-term memory network(BiLSTM)in dealing with the time-series data,a combined model of vehicle fuel consumption prediction based on CNN-BiLSTM was constructed.Then,in order to improve the model prediction accuracy,the combined model was optimized by Hyperband optimization algorithm,and the vehicle fuel consumption influencing factors were taken as the model input features to train the model to realize the modeling and prediction of vehicle fuel consumption.Finally,CNN,LSTM,BiLSTM,CNN-LSTM and CNN-BILSTM were selected as comparison models to evaluate the effect of Hyperband-CNN-BiLSTM prediction model.The results show that compared with other models,the Hyperband-CNN-BiLSTM model has the smallest mean absolute error(MAE)and root mean squared error(RMSE).They are 0.05769 and 0.11925,respectively.R^(2)is the largest(0.99176),and the model has the best prediction effect.
关 键 词:Hyperband 油耗预测 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 组合模型
分 类 号:U467.498[机械工程—车辆工程] TP18[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49