检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yin Li Guangming Zhang Jinrun Zhang Daosen Song Chenxu Guo Wei Zhou Zhiguo Fu Xiaoyang Zhu Fei Wang Yongqing Duan Jingyan Dong Hongbo Lan
机构地区:[1]Shandong Engineering Research Center for Additive Manufacturing,Qingdao University of Technology,Qingdao 266520,People’s Republic of China [2]State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China [3]Department of Industrial and System Engineering,North Caroline State University,Raleigh,NC 27695,United States of America
出 处:《International Journal of Extreme Manufacturing》2025年第1期207-235,共29页极端制造(英文)
基 金:National Natural Science Foundation of China(Grant Nos.52275345,52175331);the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(2021KJ044);Natural Science Foundation of Shandong Province,China(Granted No.ZR2020ZD04)。
摘 要:Electrohydrodynamic(EHD)jet printing represents a novel micro/nano-scale additive manufacturing process that utilises a high-voltage induced electric field between the nozzle and the substrate to print micro/nanoscale structures.EHD printing is particularly advantageous for the fabrication on flexible or non-flat substrates and of large aspect ratio micro/nanostructures and composite multi-material structures.Despite this,EHD printing has yet to be fully industrialised due to its low throughput,which is primarily caused by the limitations of serial additive printing technology.The parallel multi-nozzle array-based process has become the most promising option for EHD printing to achieve large-scale printing by increasing the number of nozzles to realise multichannel parallel printing.This paper reviews the recent development of multi-nozzle EHD printing technology,analyses jet motion with multi-nozzle,explains the origins of the electric field crosstalk effect under multi-nozzle and discusses several widely used methods for overcoming it.This work also summarises the impact of different process parameters on multi-nozzle EHD printing and describes the current manufacturing process using multi-nozzle as well as the method by which they can be realised independently.In addition,it presents an additional significant utilisation of multi-nozzle printing aside from enhancing single-nozzle production efficiency,which is the production of composite phase change materials through multi-nozzle.Finally,the future direction of multi-nozzle EHD printing development is discussed and envisioned.
关 键 词:electrohydrodynamic jetting CROSSTALK MULTI-NOZZLE nozzle array
分 类 号:TK1[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170