检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hang Chen Sheng Gao Haiou Zhang Zejia Zhao Zhengyang Duan Gordon Wetzstein Xing Lin
机构地区:[1]Tsinghua University,Department of Electronic Engineering,Beijing,China [2]Stanford University,Department of Electrical Engineering,California,United States [3]Tsinghua University,Beijing National Research Center for Information Science and Technology,Beijing,China
出 处:《Advanced Photonics》2024年第5期70-80,共11页先进光子学(英文)
基 金:supported by the National Key Research and Development Program of China(Grant No.2021ZD0109902);the National Natural Science Foundation of China(Grant No.62275139);the China Postdoctoral Science Foundation(Grant No.2023M741889).
摘 要:Optical superoscillation enables far-field superresolution imaging beyond diffraction limits.However,existing superoscillatory lenses for spatial superresolution imaging systems still confront critical performance limitations due to the lack of advanced design methods and limited design degree of freedom.Here,we propose an optical superoscillatory diffractive neural network(SODNN)that achieves spatial superresolution for imaging beyond the diffraction limit with superior optical performance.SODNN is constructed by utilizing diffractive layers for optical interconnections and imaging samples or biological sensors for nonlinearity.This modulates the incident optical field to create optical superoscillation effects in three-dimensional(3D)space and generate the superresolved focal spots.By optimizing diffractive layers with 3D optical field constraints under an incident wavelength size ofλ,we achieved a superoscillatory optical spot and needle with a full width at half-maximum of 0.407λat the far-field distance over 400λwithout sidelobes over the field of view and with a long depth of field over 10λ.Furthermore,the SODNN implements a multiwavelength and multifocus spot array that effectively avoids chromatic aberrations,achieving comprehensive performance improvement that surpasses the trade-off among performance indicators of conventional superoscillatory lens design methods.Our research work will inspire the development of intelligent optical instruments to facilitate the applications of imaging,sensing,perception,etc.
关 键 词:superresolution imaging photonic neural networks optical superoscillation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.163.238