检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张伟 倪彬 王立 谢伟 魏士钰 ZHANG Wei;NI Bin;WANG Li;XIE Wei;WEI Shiyu(China Nonferrous Metals Industry Xi′an Survey and Design Institute Co.,Ltd.,Xi′an 710000,Shaanxi,China;Lanzhou Nonferrous Metallurgy Design and Research Institute Co.,Ltd.,Lanzhou 730000,Gansu,China;School of Civil Engineering and Mapping&Surveying Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China)
机构地区:[1]中国有色金属工业西安勘察设计研究院有限公司,陕西西安710000 [2]兰州有色冶金设计研究院有限公司,甘肃兰州730000 [3]江西理工大学土木与测绘工程学院,江西赣州341000
出 处:《矿冶工程》2025年第1期21-26,共6页Mining and Metallurgical Engineering
基 金:江西省教育厅科学技术研究项目(GJJ210859)。
摘 要:针对传统公式对爆破振动预测精度不高的问题,构建了基于Bi-LSTM(双向长短期记忆网络)算法的露天矿山爆破振动速度预测模型。该模型可以在两个方向上处理时间序列数据,同时捕获过去和未来的上下输入信息与输出数据之间的依赖关系。以马钢集团高村铁矿露天矿山爆破开采监测数据为依据,选取相关数据为输入参数,并将Bi-LSTM预测结果与萨道夫斯基公式预测结果进行对比。结果表明:萨道夫斯基公式预测的爆破振动速度平均误差为26.87%,Bi-LSTM算法预测的爆破振动速度平均误差为8.95%;Bi-LSTM模型预测结果与实测结果具有较高的吻合度。后期将以其他矿山的监测数据为依托对模型进行训练,以提高Bi-LSTM模型的泛化能力,并通过迁移学习植入矿山安全实时监测预警平台。The traditional formula for prediction of blast-induced vibration has low accuracy,thus a prediction model for blast-induced vibration velocity in open-pit mines was constructed based on bidirectional long-short-term memory network(Bi-LSTM).This model can process time series data in both directions while capturing the dependency between inputs of the past and future information at upper and lower layers and the outputs.From the monitoring data of blasting operation in Gaocun Iron Mine of Maanshan Iron and Steel Group,the relevant data were selected as the inputs,and the prediction results by Bi-LSTM were compared with those based on Sadaovsky formula.The results show that the blast-induced vibration velocity predicted based on Sadaovsky formula has a mean error of 26.87%,and the blast-induced vibration velocity predicted by Bi-LSTM algorithm has a mean error of 8.95%.It is shown that the Bi-LSTM model can have the prediction results in a high degree of agreement with the measured results.In the future,this Bi-LSTM model will be trained with the monitoring data of other mines to improve its generalization ability,and also will be implanted by transfering learning into a real-time safety monitoring and early warning platform for mines.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170