Globally validated non-unique inversion framework to estimate optically active water quality indicators using in situ and space-borne hyperspectral data sets  

在线阅读下载全文

作  者:Shishir Gaur Rajarshi Bhattacharjee Shard Chander Anurag Ohri Prashant KSrivastava 

机构地区:[1]Department of Civil Engineering,Indian Institute of Technology(BHU),Varanasi 221005,India [2]Space Application Centre,ISRO,Ahmedabad 380015,India [3]Institute of Environment and Sustainable Development,Banaras Hindu University(BHU),Varanasi 221005,India

出  处:《Frontiers of Environmental Science & Engineering》2025年第1期167-184,共18页环境科学与工程前沿(英文)

基  金:supported by the Indian Space Research Organization(ISRO)through the grant ISRO/RAC-S/IIT(BHU)2022-23.

摘  要:As water quality is a combination of multiple optically active parameters,there is a growing interest in probabilistic models to predict water quality.This study aims to add to the water quality prediction studies by introducing ensemble learning with deep learning-based mixture density networks with multiple probabilistic Gaussian distributions.We named the approach as Ensembled Gaussian Mixture Density Network(GMDN).Many existing water quality algorithms rely on localized data sets,which limits their applicability.This research addresses this by developing and evaluating the proposed model using the global in situ water quality data set GLORIA(Global Reflectance community data set for Imaging and optical sensing of Aquatic environments).We focused on estimating two key biogeochemical components(BPs):Total Suspended Solids(TSS)and Chlorophyll-a(Chla),along with one inherent optical property(IoP),the absorption coefficient of colored dissolved organic matter(αCDOM).The proposed approach performs quite reliably when evaluated on the data samples of individual countries.The GMDN algorithm has been fine-tuned on the satellite-matchup for the river Ganga near Varanasi city.The fine-tuning was implemented using the remote sensing reflectance(Rrs)of the spaceborne hyperspectral data set PRISMA(PRecursore IperSpettrale della Missione Applicativa).The contribution of the riverbed floor to the Rrs of PRISMA has been computed using physics-based simulations in the Water Color Simulator(WASI).Overall,the simultaneous use of multiple probabilistic distributions and ensembled architectures improves the predictive accuracy of WQ parameters compared to the existing operational algorithms.

关 键 词:Biogeochemical components(BP) Inherent Optical Properties(IoP) GLORIA PRISMA Water quality 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象