检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rubén Cañas Cañas Raimundo SeguíLópez-Peñalver Jorge Casaña Mohedo JoséVicente Benavent Cervera Julio Fernández Garrido Raúl Juárez Vela Ana Pellín Carcelén Óscar GarcíaAlgar Vicente Gea Caballero Vicente Andreu-Fernández
机构地区:[1]Faculty of Health Sciences,Valencian International University(VIU),Valencia 46002,Spain [2]Global Omnium,Valencia 46005,Spain [3]Grup de Recerca Infancia i Entorn(GRIE),Institut d'Investigacions Biomèdiques August Pi i Sunyer(IDIBAPS),Barcelona 08036,Spain [4]Department de Cirurgia i Especialitats Mèdico-Quirúrgiques,Universidad de Barcelona,Barcelona 08036,Spain [5]Faculty of Health Sciences,Universidad Católica de Valencia San Vicente Mártir,Valencia 46001,Spain [6]Department of Nursing,University of Valencia,Valencia 46001,Spain [7]Faculty of Health Sciences,La Rioja University,Logroño 26006,Spain [8]Department of Neonatology,Instituto Clínic de Ginecología,Obstetricia y Neonatología(ICGON),Hospital Clínic-Maternitat,BCNatal,Barcelona 08028,Spain [9]Biosanitary Research Institute,Valencian International University(VIU),Valencia 46002,Spain
出 处:《Frontiers of Environmental Science & Engineering》2025年第1期201-214,共14页环境科学与工程前沿(英文)
基 金:funded by the Valencian International University and Generalitat Valenciana(GVA)through the Grants to emerging research groups 2023(CE2023)from the Regional Ministry of Innovation,Universities,Science and Digital Society(CIGE/2022/58).
摘 要:The COVID-19 pandemic,caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),triggered a global emergency that exposed the urgent need for surveillance approaches to monitor the dynamics of viral transmission.Several epidemiological tools that may help anticipate outbreaks have been developed.Wastewater-based epidemiology is a non-invasive and population-wide methodology for tracking the epidemiological evolution of the virus.However,thorough evaluation and understanding of the limitations,robustness,and intricacies of wastewater-based epidemiology are still pending to effectively use this strategy.The aim of this study was to train highly accurate predictive models using SARS-CoV-2 virus concentrations in wastewater in a region consisting of several municipalities.The chosen region was Catalonia(Spain)given the availability of wastewater SARSCoV-2 quantification from the Catalan surveillance network and healthcare data(clinical cases)from the regional government.By using various feature engineering and machine learning methods,we developed a model that can accurately predict and successfully generalize across the municipalities that make up Catalonia.Explainable Machine Learning frameworks were also used,which allowed us to understand the factors that influence decision-making.Our findings support wastewater-based epidemiology as a potential surveillance tool to assist public health authorities in anticipating and monitoring outbreaks.
关 键 词:SARS-CoV-2 Wastewater based epidemiology Surveillance Machine learning Predictive models Model explainability
分 类 号:X70[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49