大数据时代农机产业质量投诉监督现状与管理对策分析——以湖南邵阳为例  

Analysis of the Current Situation and Management Countermeasures of Quality Complaints and Supervision in the Agricultural Machinery Industry in the Era of Big Data:A Case Study of Shaoyang,Hunan Province

在线阅读下载全文

作  者:付中平 FU Zhongping(Shaoyang Agricultural Mechanization Technology Promotion Station,Shaoyang 422001,China)

机构地区:[1]邵阳市农业机械化技术推广站,邵阳422001

出  处:《高科技与产业化》2025年第2期94-97,共4页High-Technology & Commercialization

摘  要:随着人工智能、物联网和大数据技术的快速发展,中国农机产业正加速向智能化、数字化转型,智能农机装备逐步普及。然而,农机质量投诉问题也随之凸显,成为影响农机化健康发展的重要因素。本文以湖南邵阳为例,分析了大数据时代农机产业质量投诉监督的现状与管理对策,提出利用大数据技术加强农机质量投诉监管、完善农机质量监督管理体系、加强法规宣传和农机队伍建设等对策,以提升监管效率、优化投诉处理流程,保障农机用户的合法权益,促进农业机械化高质量发展。With the rapid development of artificial intelligence,the Internet of Things,and big data technology,China’s agricultural machinery industry is accelerating its transformation towards intelligence and digitization.Intelligent agricultural machinery equipment is gradually becoming popular,significantly improving agricultural production efficiency and precision.However,the issue of complaints about agricultural machinery quality has also become prominent,becoming an important factor affecting the healthy development of agricultural mechanization.This article takes Shaoyang,Hunan Province as an example to analyze the current situation and management strategies of agricultural machinery quality complaint supervision in the era of artificial intelligence.It proposes to use big data technology to strengthen the supervision of agricultural machinery quality complaints,improve the management system of agricultural machinery quality supervision,strengthen regulatory publicity and the construction of agricultural machinery teams,in order to improve regulatory efficiency,optimize complaint handling processes,protect the legitimate rights and interests of agricultural machinery users,and promote the high-quality development of agricultural mechanization.

关 键 词:人工智能 大数据 农机产业 农机质量投诉 农机监督管理 

分 类 号:F32[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象