检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yanan LU Ke YOU Yuxiang WANG Ying LIU Cheng ZHOU Yutian JIANG Zhangang WU
机构地区:[1]National Center of Technology Innovation for Digital Construction,Huazhong University of Science and Technology,Wuhan 430074,China [2]School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China [3]Institute of Artificial Intelligence,Huazhong University of Science and Technology,Wuhan 430074,China [4]Shantui Construction Machinery Co.,Ltd,Jining 272000,China
出 处:《Frontiers of Engineering Management》2025年第1期39-58,共20页工程管理前沿(英文版)
基 金:National Natural Science Foundation of China(Grant Nos.72171092,52192664 and 71821001);Natural Science Fund for Distinguished Young Scholars of Hubei Province,China(Grant No.2021CFA091).
摘 要:Large-scale machinery operated in a coordinat-ed manner in earthworks for mining constitutes high safety risks.Efficient scheduling of such machinery,factoring in safety constraints,could save time and significantly improve the overall safety.This paper develops a model of automated equipment scheduling in mining earthworks and presents a scheduling algorithm based on deep rein-forcement learning with spatio-temporal safety constraints.The algorithm not only performed well on safety parame-ters,but also outperformed randomized instances of various sizes set against real mining applications.Further,the study reveals that responsiveness to spatio-temporal safety constraints noticeably increases as the scheduling size increases.This method provides important noticeable improvements to safe automated scheduling in mining.
关 键 词:deep reinforcement learning mining earthwork automated scheduling spatio-temporal safety constraints
分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7