检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Fuzan CHEN Jing YANG Haiyang FENG Harris WU Minqiang LI
机构地区:[1]College of Management and Economics,Tianjin University,Tianjin 300072,China [2]Department of Information Technology and Decision Sciences,Old Dominion University,Norfolk,VA 23529,USA
出 处:《Frontiers of Engineering Management》2025年第1期117-127,共11页工程管理前沿(英文版)
基 金:National Natural Science Foundation of China(Grants Nos.72394373,72231004,72022012,and 71971153).
摘 要:Quality of Service(QoS)is a key factor for users when choosing cloud services.However,QoS values are often unavailable due to insufficient user evaluations or provider data.To address this,we propose a new QoS prediction method,Multi-source Feature Two-phase Learning(MFTL).MFTL incorporates multiple sources of features influencing QoS and uses a two-phase learning framework to make effective use of these features.In the first phase,coarse-grained learning is performed using a neighborhood-integrated matrix factorization model,along with a strategy for selecting high-quality neighbors for target users.In the second phase,reinforcement learning through a deep neural network is used to capture interactions between users and services.We conducted several experi-ments using the WS-Dream data set to assess MFTL's performance in predicting response time QoS.The results show that MFTL outperforms many leading QoS prediction methods.
关 键 词:cloud service QoS prediction matrix factorization deep neural network
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49