基于改进狼群算法的含分布式电源的配电网故障定位  

Fault Location of Distribution Network with Distributed Generation Based on Improved Wolfpack Algorithm

在线阅读下载全文

作  者:朱智 张鑫 刘凯 Zhu Zhi;Zhang Xin;Liu Kai(School of Automation,Nanjing University of Technology and Science,Nanjing 210000,China;Shanxian Power Supply Company of State Grid Shandong Electric Power Company,Heze 274300,China)

机构地区:[1]南京理工大学自动化学院,南京210000 [2]国网山东省电力公司单县供电公司,山东菏泽274300

出  处:《兵工自动化》2025年第3期50-54,共5页Ordnance Industry Automation

摘  要:针对灰狼算法(grey wolf optimizer,GWO)在配电网节点数目较多的情况下进行故障定位时,存在容易陷入局部最优陷阱等缺点,提出一种基于改进狼群算法的配电网故障定位算法。通过引入天牛须算法和改进灰狼算法(beetle grey wolf optimizer,BGWO),提高灰狼算法的性能,并以33节点的配电网为仿真算例验证。结果表明,该算法在定位分布式电源接入的配电网中的故障区段时具有高可靠性与高容错性。The gray wolf algorithm(grey wolf optimizer,GWO)is easy to fall into the trap of local optimum when it is used for fault location in distribution network with a large number of nodes.The performance of gray wolf algorithm is improved by introducing longicorn whisker algorithm and improving gray wolf algorithm(beetle grey wolf optimizer,BGWO),and a 33-node distribution network is taken as a simulation example to verify the effectiveness of the algorithm.The results show that the algorithm has high reliability and high fault tolerance when locating the fault section in the distribution network with distributed generation.

关 键 词:配电网 故障定位 容错性 改进灰狼算法 

分 类 号:TM727[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象