TiO_(2)@SiO_(2)与蒙脱土纳米材料协同提升聚丙烯薄膜绝缘性能研究  

TiO_(2)@SiO_(2) Research on Synergistically Improving the Insulation Performance of Polypropylene Film with Montmorillonite Nanomaterials

在线阅读下载全文

作  者:谢军 刘麒 李霖 刘子谦 谢庆 Xie Jun;Liu Qi;Li Lin;Liu Ziqian;Xie Qing(Department of Electric Power Engineering,North China Electric Power University,Baoding,071003,China;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electrical Power University,Beijing,102206,China)

机构地区:[1]华北电力大学电力工程系,保定071003 [2]新能源电力系统全国重点实验室(华北电力大学),北京102206

出  处:《电工技术学报》2025年第7期2282-2294,共13页Transactions of China Electrotechnical Society

基  金:国家重点研发计划资助项目(2021YFB2401503)。

摘  要:为提高聚丙烯(PP)薄膜的绝缘性能,该文制备了一种多维度结合的纳米填料,通过烧结方法,使球形纳米颗粒(TiO_(2)@SiO_(2))与片状蒙脱土(MMT)结合。在聚丙烯中掺杂不同质量分数的该纳米颗粒,研究了聚丙烯薄膜的击穿性能,确定最佳填充比例,并分析其性能提高机理。实验结果表明,二维MMT引入了新的界面,提高了PP薄膜的熔融温度和结晶度,使晶体结构更加完善;TiO_(2)@SiO_(2)纳米颗粒引入了更多陷阱,改善了二维MMT的分散性,提高了PP薄膜的介电性能。击穿结果表明,掺杂该纳米填料的PP薄膜绝缘性能显著提高,在1.0%填充比例下的绝缘性能最佳。在25℃下,复合薄膜(PP/MMT@T@S)的直流击穿强度提升34.5%;在50℃和75℃下,分别提升33.51%和31.96%。此外,采用相场模拟方法解释了两种维度材料在微观层面的相互作用机理,TiO_(2)@SiO_(2)的修饰使原本概率阻挡的MMT变为定向阻挡。该文研究可为提升复合材料绝缘性能提供新的思路。Polypropylene(PP)exhibits excellent insulation properties and recyclability,making it a valuable material for promoting the green transformation of power grids.Polypropylene film possesses high dielectric strength and superior heat resistance,making it a widely utilized component in dry film capacitors.These capacitors are primarily employed in ultra-high voltage DC transmission systems,where they provide essential functions such as damping,voltage support,and commutation assistance.The performance of dry film capacitors is largely dependent on the insulation quality of the polypropylene film.During operation,these capacitors must endure transient overvoltages and harmonics.A breakdown in the internal polypropylene film can lead to the failure of the entire capacitor group,compromising power stability.Therefore,enhancing the insulation performance of polypropylene film is critical for ensuring the reliable operation of ultra-high voltage transmission systems.Physical doping involves the incorporation of nanoparticles into a matrix to produce composite dielectric materials.Common nanofillers are categorized based on their dimensions,typically including zero-dimensional particles and two-dimensional sheet structures.Zero-dimensional particles generally possess a high dielectric constant.When these particles are used as dopants,they enhance the electric field distribution within the matrix,thereby increasing the breakdown strength.However,the considerable dielectric constant difference at the nanoparticle interface can induce interface distortion,which limits the improvement in breakdown strength.In contrast,two-dimensional sheet structures have a large surface area that can impede the development of breakdown paths within the matrix.This blocking effect is most effective when the sheets are densely distributed,as they form a network that effectively obstructs breakdown paths.Nonetheless,high-density distribution also facilitates carrier mobility,which can adversely affect the increase in breakdown strength.Therefor

关 键 词:聚丙烯薄膜 纳米复合材料 烧结 击穿强度 相场模拟 

分 类 号:TM855[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象