机构地区:[1]College of Science,Xi’an University of Science and Technology,Xi’an 710054,China [2]Beijing Institute of Space Long March Vehicle,Beijing 100076,China [3]Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China [4]State Key Laboratory of Strength and Vibration for Mechanic Structures,Shaanxi Key Laboratory of Service Environment and Control for Flight Vehicles,School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China
出 处:《Acta Mechanica Sinica》2025年第2期116-131,共16页力学学报(英文版)
基 金:This work was supported by the National Natural Science Foundation of China(Grant Nos.92371201,52192633,11872293,and 92152301);the Natural Science Basic Research Program of Shaanxi(Grant Nos.2024JC-YBQN-0008,and 2022JC-03);Shaanxi Key Research and Development Program(Grant No.2022ZDLGY02-07);the Joint Natural Science Foundation of China with Guangdong Province for TianHe-II Supercomputer Resources,and the Research Start-up Foundation of Xi’an University of Science and Technology for the High-Level Talent.
摘 要:The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.低雷诺数的流动控制是空气动力学领域极具发展前景的先进技术之一,也是新型飞行器创新的重要源泉.本文提出了一种利用双柔性襟翼相互作用机制实现翼型非线性流动控制的新方法,并利用自主构建的浸入边界-格子Boltzmann-有限元方法对流动控制机理进行了深入系统的研究,讨论了双柔性襟翼材料属性和襟翼长度对翼型非线性流动控制性能的影响,提出流固耦合作用下双柔性襟翼结构变形与涡系演化之间的映射关系.研究结果表明,位于上游的柔性襟翼在双襟翼流动控制中起关键作用,上游柔性襟翼的流固耦合特性会改变其后方的非定常流动,从而影响下游柔性襟翼的变形.不同材料属性、不同长度的柔性襟翼会通过诱导涡改变自身的流固耦合特性,进而有效抑制翼型表面的流动分离.双柔性襟翼的相互作用对于提高流动控制的自主性和可调节性具有极其深远的科学意义.数值结果将为新型襟翼被动控制技术的发展与应用提供重要的理论支持.
关 键 词:Nonlinear flow control Flexible flap Fluid-structure interaction Flow separation IB-LB-FEM
分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...