商用MCrAlY粉末对纳米结构YSZ热障涂层热循环行为的影响  

Influence of commercial MCrAlY powders on thermal cycling behaviors of TBCs with nano-structured YSZ

在线阅读下载全文

作  者:李超[1] 程玉贤 王璐 陈卫杰 LI Chao;CHENG Yuxian;WANG Lu;CHEN Weijie(Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China;R&D Center,AECC Shenyang Liming Aero-Engine Co.,Ltd.,Shenyang 110043,China;Institute of Coating Technology for Hydrogen Gas Turbines,Liaoning Academy of Materials,Shenyang 110167,China)

机构地区:[1]昆明理工大学材料科学与工程学院,昆明650093 [2]中国航发沈阳黎明航空发动机有限责任公司技术中心,沈阳110043 [3]辽宁材料实验室燃氢防护技术研究所,沈阳110167

出  处:《航空材料学报》2025年第2期73-81,共9页Journal of Aeronautical Materials

基  金:国家自然科学基金青年科学基金项目(52401093);辽宁省科技重大专项(2024JH1/11700039);辽宁省中央引导地方科技发展资金联合基金(IC24ZXK300)。

摘  要:分析目前国际燃气轮机制造商和维修商常用的3种Al含量高于8%(质量分数)的MCrAlY金属黏结层对HVOF-MCrAlY+APS-纳米结构YSZ(nYSZ)热障涂层在室温至1150℃之间的热循环行为的影响。HVOF-A386-2.5+APS-nYSZ的平均热循环寿命最高,HVOF-A9624+APS-nYSZ的平均热循环寿命最低,但是三者差别并不十分明显。3种HVOF-MCrAlY+APS-nYSZ热障涂层在热循环环境中的失效方式与传统的HVOF-MCrAlY+APSYSZ(mYSZ)的失效方式完全相同,主要是由于nYSZ/mYSZ和m YSZ/mYSZ界面开裂引起在靠近APSYSZ/HVOF-MCrAlY界面的APS-nYSZ层中的裂纹扩展与合并。HVOF-A9624表面的TGO生长速率最高,HVOF-A386-2.5表面的TGO生长速率最低,但是三者差别并不明显。由此可知,可以通过以下方式改善HVOFMCrAlY+APS-nYSZ热障涂层热循环寿命:增加HVOF-MCrAlY的表面粗糙度以改善APS-nYSZ/HVOFMCrAlY界面的结合强度;提高APS-nYSZ层中的YSZ/YSZ界面的结合力以避免YSZ/YSZ界面和APS-nYSZ外表面的开裂;控制HVOF-MCrAlY中的Al含量、添加适量能够减缓扩散速率的合金元素,以降低TGO生长速率和防止生成大量的CSN混合氧化物,或能减缓热障涂层中的裂纹扩展。This study investigates the thermal cycling behavior of HVOF-MCrAlY combined with APS-nanostructured YSZ(nYSZ)thermal barrier coatings(TBCs)produced using three commercial MCrAlY powders commonly utilized by gas turbine original equipment manufacturers(OEMs)and maintenance,repair,and overhaul(MRO)companies,within a temperature range from ambient to 1150℃.Among the coatings,HVOF-A386-2.5+APS-nYSZ exhibits the longest furnace cycle testing(FCT)life,while HVOF-A9624+APS-nYSZ has the shortest.However,the differences in FCT life among the three TBCs are insignificant.All three coatings fails in a manner similar to conventional HVOF-MCrAlY+APS-YSZ(mYSZ)coatings,primarily due to crack propagation and coalescence in the APS-YSZ layer near the YSZ/MCrAlY interface,resulting from interface separation at mYSZ/nYSZ and mYSZ/mYSZ interfaces.The thermally grown oxide(TGO)layer grows fastest on the HVOF-A9624 surface,whereas the growth rate is slowest on the HVOF-A386-2.5 surface.However,the variations in TGO growth rates among the three coatings are relatively small.It is anticipated that increasing the surface roughness of the HVOF-MCrAlY may strengthen the YSZ/MCrAlY interface,thus mitigating crack propagation and coalescence in the TBC.Additionally,reinforcing the YSZ/YSZ interface can enhance resistance to interface separation and surface cracking.Furthermore,controlling the aluminum(Al)content in the MCrAlY and/or doping alloy elements into the MCrAlY may slow down diffusion,reducing the TGO growth rate and preventing excessive formation of mixed oxides.These strategies may collectively contribute to improving the durability of HVOF-MCrAlY+APS-YSZ TBCs under thermal cycling conditions.

关 键 词:燃气轮机 热障涂层 HVOF-MCrAlY APS-nYSZ 热生长氧化物 裂纹扩展 热循环寿命 

分 类 号:V261.933[航空宇航科学与技术—航空宇航制造工程] TB3[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象