检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蓝贤鹏 卢瑾 曹辉 高谦[1] 吴伟 张超 LAN Xianpeng;LU Jin;CAO Hui;GAO Qian;WU Wei;ZHANG Chao(School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China;Qian′an Weisheng Solid Waste Environmental Protection Industry Co.,Ltd.,Qian′an 063000,China)
机构地区:[1]北京科技大学土木与资源工程学院,北京100083 [2]迁安威盛固废环保实业有限公司,河北迁安063000
出 处:《金属矿山》2025年第3期17-24,共8页Metal Mine
基 金:“十四五”国家重点研发计划项目(编号:2023YFC2907403);中央高校基本科研业务费专项(编号:06500229);中央高校优秀青年团队培育项目(编号:FRF-EYIT-23-01)。
摘 要:充填料浆性能是充填采矿的重要内容,胶凝材料和尾砂粒径对充填料浆性能产生显著影响。针对新型钢渣基胶凝材料并考虑3种粒径尾砂的充填料浆,开展了充填料浆性能的试验研究。选择尾砂均值粒径、灰砂比和料浆浓度进行正交试验设计,开展对充填料浆泌水率、稠度和凝结时间的测试。利用SPSS软件对试验数据进行方差分析,分析各因素对充填料浆参数的影响。为建立料浆工作特性与影响因素之间的关系,通过构建充填料浆工作特性的3层前馈神经网络模型,讨论了影响因素在不同水平条件下对充填料浆工作性能的影响规律。结果表明:料浆浓度对泌水率和稠度的影响最大,其次是灰砂比和尾砂粒径;尾砂粒径对凝结时间影响最显著,其次是灰砂比和浓度。利用神经网络模型对充填料浆工作性能的预测误差不超过10%,满足工程实际应用要求。上述研究结果对不同粒径尾砂以及新型胶凝材料的充填料浆设计具有一定的参考价值。The performance of filling slurry is an important content of filling mining,and the cementing material and the particle size of tailings have significant influence on the performance of filling slurry.Based on a new type of steel slag base cementing material and considering three particle sizes of tailing slurry,an experimental study on the properties of filling slurry was carried out.The average particle size of tailings,lime sand ratio and slurry concentration were selected to carry out orthogonal experimental design,and the bleeding rate,consistency and setting time of filling slurry were tested.SPSS software was used to analyze the variance of the test data,and the influence of each factor on the parameters of the filling slurry was analyzed.In order to establish the relationship between the working characteristics of the slurry and the influencing factors,a 3-layer feedforward neural network model of the working characteristics of the slurry was constructed,and the influencing rules of the influencing factors on the working performance of the slurry at different levels were discussed.The results show that slurry concentration has the greatest influence on bleeding rate and consistency,followed by lime sand ratio and tailings particle size.The particle size of the tailings has the most significant effect on the setting time,followed by the ratio of lime and sand and the concentration.The prediction error of the working performance of the filling paste by using the neural network model is less than 10%,which can meet the requirements of practical engineering application.The above study results has a certain reference value for the design of filling slurry of different particle size tailings and new cementing materials.
关 键 词:充填料浆性能 胶凝材料 尾砂粒径 正交试验 方差分析 神经网络
分 类 号:TD853[矿业工程—金属矿开采]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7