基于无锚深度卷积神经网络的月表小尺度撞击坑自动识别  被引量:1

Automatic anchor-free convolutional neural network method for recognizing small-scale lunar impact craters

在线阅读下载全文

作  者:张梓璇 杨俊涛 李林 张硕伟 杨子毅 马月超 ZHANG Zixuan;YANG Juntao;LI Lin;ZHANG Shuowei;YANG Ziyi;MA Yuechao(School of Earth Resources,China University of Geosciences,Wuhan 430074,China;College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China;Space Optoelectronic Measurement and Perception Lab.,Beijing Institute of Control Engineering,Beijing 100190,China;College of Earth Sciences and Engineering,Shandong University of Science and Technology,Qingdao 266590,China)

机构地区:[1]中国地质大学(武汉)资源学院,武汉430074 [2]山东科技大学测绘与空间信息学院,青岛266590 [3]北京控制工程研究所空间光电测量与感知实验室,北京100190 [4]山东科技大学地球科学与工程学院,青岛266590

出  处:《遥感学报》2025年第2期429-441,共13页NATIONAL REMOTE SENSING BULLETIN

基  金:北京控制工程研究所空间光电测量与感知实验室开放基金(编号:LabSOMP-2023-08)。

摘  要:撞击坑作为月球表面上最典型和最常见的地貌单元,其形态特征和空间分布记录着月球的演化历史、气候形成以及月球表面年代。由于撞击坑边缘模糊、撞击坑嵌套等现象,导致撞击坑(尤其是小尺度撞击坑)自动识别仍存在识别精度不高、大尺度撞击坑中的小尺度撞击坑难以不易识别等问题。因此,针对小尺度撞击坑数量众多且不易识别,以及嵌套撞击坑识别等问题,本文提出了一种基于迁移学习策略的无锚深度卷积神经网络月表小尺度撞击坑自动识别方法,来自动定位和识别撞击坑。该方法在堆叠沙漏网络生成的高分辨率特征图上直接回归出撞击坑的中心及其大小,并且无需使用非极大值抑制等后处理操作,实现了不同类型撞击坑的自动识别。同时,采用迁移学习的思想进行训练,为模型训练赋予一定的优化参数,使其并非从头开始训练,从而使模型具备更高的可靠性和稳健性。文中选择虹湾和风暴洋月表地区的影像进行实验验证,并与其现有人工标注的Robbins撞击坑数据库进行定量与定性评估,结果表明本文设计的自动识别模型能有效地实现撞击坑提取,且一定程度上解决了嵌套撞击坑中小尺度撞击坑的识别。Impact craters are the most typical and common geomorphic units on the lunar surface.Their morphological WU characteristics and spatial distribution record the evolution history,climate formation,and surface age of the moon.Due to the impact crater’s fuzzy edges and nested impact craters,the automatic recognition of impact craters(especially small-scale one)still faces problems such as low accuracy and difficulty in identifying small-scale within large-scale impact crater.Therefore,to address these,this paper proposes an automatic anchor-free convolutional neural network method based on transfer learning strategy to locate and identify small-scale lunar impact craters automatically.Instead of using postprocessing operations such as nonmaximum suppression,the proposed method directly locates the centers of impact craters and regresses their sizes on the high-resolution feature map generated by the stacked hourglass network;thus,it realizes the automatic recognition of different types of impact craters.Moreover,the idea of transfer learning is used for training,not from scratch,so that the model has higher reliability and robustness.This paper selects the Orthophoto image captured by the LRO WAC camera on the Lunar Reconnaissance Orbiter and the Robbins impact crater database in the Sinus Iridum and Oceanus Procellarum region to verify the reliability and robustness of the developed method.The method in this paper achieves a recall rate of up to 74.71%and an accuracy of up to 75.97%.Compared with other existing methods,the proposed method shows remarkable advantages in recognition accuracy and a high adaptability in extracting and identifying impact craters in different areas of the lunar surface.Comparing the performance and accuracy by drawing roc curves of different models reveals that transfer learning can effectively help the models converge better and improve the performance of model classification.The number of craters identified by the model is calculated and compared with the number of craters in the Rob

关 键 词:撞击坑提取 智能识别 深度学习 目标识别 虹湾地区 风暴洋地区 

分 类 号:P691[天文地球—地质学] P2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象