检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄超 胡勤友 黄子硕 HUANG Chao;HU Qinyou;HUANG Zishuo(Merchant Marine College,Shanghai Maritime University,Shanghai 201306,China)
出 处:《上海海事大学学报》2025年第1期17-22,111,共7页Journal of Shanghai Maritime University
基 金:国家自然科学基金(52372316)。
摘 要:雾会使水上拍摄的图像质量下降,导致基于视觉的船舶智能感知系统和水域监控系统受到影响;收集水面上的有雾图像和无雾图像难度较大。针对上述问题,提出一种基于改进循环生成对抗网络(cycle-consistent generative adversarial network,CycleGAN)的水上图像去雾算法。将CycleGAN的生成器模块替换为改进后的门控上下文聚合网络(gated context aggregation network,GCANet),同时使用感知损失从高级语义角度约束图像的生成质量。实验表明:在合成数据集上,所提算法的峰值信噪比和结构相似度分别为25.26和0.9047,相较于对比算法分别提高了13.6%~41.2%和10.9%~17.9%,并在水上真实数据集上展示出了更优的清晰度和色彩真实性。Overwater images often suffer from quality degradation due to fog,affecting vision-based ship intelligent perception systems and water monitoring systems.In addition,it is difficult to collect foggy and fog-free overwater images.To address these problems,an overwater image dehazing algorithm based on the improved cycle-consistent generative adversarial network(CycleGAN)is proposed.The generator module of CycleGAN is replaced with the improved gated context aggregation network(GCANet),and a perceptual loss is introduced to constrain image quality from a high-level semantic perspective.Experimental results on a synthetic dataset show that,the proposed algorithm achieves a peak signal-to-noise ratio of 25.26 and a structural similarity index of 0.9047,which are 13.6%to 41.2%higher and 10.9%to 17.9%higher than those of contrast algorithms,respectively.Furthermore,the algorithm demonstrates superior clarity and color fidelity on a real overwater dataset.
关 键 词:图像去雾 循环生成对抗网络(CycleGAN) 门控上下文聚合网络(GCANet) 感知损失
分 类 号:U675.79[交通运输工程—船舶及航道工程] TP391.4[交通运输工程—船舶与海洋工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38