基于节点信任特征和非合作博弈的恶意节点检测  

Detection of malicious nodes based on node trust characteristics and non cooperative game

在线阅读下载全文

作  者:王欢 杜永文[1] 王春芳 黄腾飞 WANG Huan;DU Yongwen;WANG Chunfang;HUANG Tengfei(School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学电子与信息工程学院,甘肃兰州730070

出  处:《传感器与微系统》2025年第4期123-127,共5页Transducer and Microsystem Technologies

基  金:甘肃省自然科学基金资助项目(1610RJZA056)。

摘  要:针对无线传感器网络(WSNs)中恶意节点检测存在复杂度高和检测精度低等问题,提出一种基于节点信任特征和非合作博弈(NTC-NCG)的恶意节点检测方法。首先,该方法通过设置独立监督网络确保监督节点安全,采用分簇优化机制改进簇头选取策略;其次,构建信任评估模型,比较节点可信度和相异系数,将节点分为恶意节点和可疑节点;最后,建立非合作博弈模型,引入奖惩机制,迫使可疑节点转发数据包,激励监督节点持续监听并及时检测出网络中的恶意节点。实验结果表明:该方法对恶意节点入侵检测具有有效性,提高了网络检测率,降低了误检率,从而延长了网络生命周期。Aiming at the problem of a method for high complexity and low detection precision of malicious node detection in wireless sensor networks(WSNs)detection of malicious nodes based on node trust characteristics and non cooperative games(NTC-NCG)is proposed.Firstly,this method ensures the security of monitoring nodes by setting up an independent monitoring network,and improves the cluster head selection strategy through clustering optimization mechanism.Secondly,a trust evaluation model is constructed,the reliability and dissimilarity coefficients of nodes are compared,and classify nodes into malicious and suspicious nodes.Finally,a non cooperative game model is established and a reward and punishment mechanism is introduced to force suspicious nodes to forward data packets,incentivize supervising nodes to continuously monitor and detect malicious nodes in the network in a timely manner.The experimental results show that this method is effective in detecting malicious node intrusions,improves network detection rate,reduces false detection rate,and thus extendes the network lifecycle.

关 键 词:无线传感器网络 恶意节点 信任评估模型 非合作博弈 奖惩机制 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象