检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rui Wang Yuan Tian Xuefeng Gao Lei Jiang
机构地区:[1]Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China [2]School of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Hefei 230026,China [3]Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China
出 处:《Chinese Chemical Letters》2025年第3期449-453,共5页中国化学快报(英文版)
基 金:supported by National Natural Science Foundation of China(No.21573276);Natural Science Foundation of Jiangsu Province(No.BK20170007);Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB846).
摘 要:Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological innovations.Currently,exploring facile micro/nanofabrication approaches to create high-efficiency CHT surfaces has been one of research hotspots.In this work,we propose and demonstrate a type of new superwettability hybrid surface for high-efficiency CHT,which consists of superhydrophobic nanoneedle arrays and triangularly-patterned superhydrophilic microdots(SMDs).Such hybrid surface can be fabricated by the facile growth of densely-packed ZnO nanoneedles on the Zn-electroplated copper surface followed by fluorosilane modification and mask-assisted photodegradation.Through regulating the diameters and interspaces of SMDs,we obtain the optimized triangularly-patterned hybrid surface,which shows 42.7%higher CHT coefficient than the squarely-patterned hybrid surface and 58.5%higher CHT coefficient than the superhydrophobic surface.The key of such hybrid surface design is to considerably increase CHT coefficient brought about by SMD-triggered drop sweeping at the cost of slightly reducing heat transfer area of superhydrophobic functional zone for drop jumping.Such new strategy helps develop advanced CHT surfaces for high-efficiency electronic cooling and energy utilization.
关 键 词:Superwettability Hybrid surface SUPERHYDROPHOBIC SUPERHYDROPHILIC Patterned surfaces Condensation heat transfer
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90