检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊葡萄 FAN Putao(Xingzhi College of Xi’an University of Finance and Economics,Xi’an 710038,China)
出 处:《自动化与仪器仪表》2025年第3期76-80,共5页Automation & Instrumentation
摘 要:为了提高汽车电子设备诊断与维修效率,保证汽车维修厂能够准时向客户交付维修完成后的车辆,提出了一种基于改进细菌觅食算法的汽车电子设备维修人员调度优化数学模型。首先针对细菌觅食算法的缺点进行改进,然后构建汽车电子设备维修人员调度优化数学模型,最后将改进后的细菌觅食算法应用于模型求解测试。测试结果表明:传统BFO算法和GA算法在求解时,若算例规模小,其寻优精度可以达到70%~80%,但随着算例规模变大,寻优精度只有50%左右。PSO算法对前两种算法相比稍微稳定一些,但面对大规模算例寻优精度也只有60%。改进的BFO算法随着维修任务数量的增加,收敛速度增加不明显,寻优精度一直维持90%以上,最高达到93%。综上,所构建模型具有可行性,改进的BFO算法收敛速度快、寻优能力强,具有良好的稳定性,十分适用于汽车电子设备维修人员调度优化的求解。In order to improve the efficiency of diagnosis and maintenance of automotive electronic equipment and ensure that car repair shops can deliver repaired vehicles to customers on time,this paper proposes a mathematical model for optimizing the scheduling of automotive electronic equipment maintenance personnel based on an improved bacterial foraging algorithm.Firstly,improvements were made to the shortcomings of the bacterial foraging algorithm.Then,a mathematical model for optimizing the scheduling of automotive electronic equipment maintenance personnel was constructed.Finally,the improved bacterial foraging algorithm was applied to model solving and testing.The test results show that the traditional BFO algorithm and GA algorithm can achieve optimization accuracy of 70% to 80% when solving problems with small case sizes.However,as the case size increases,the optimization accuracy is only about 50%.The PSO algorithm is slightly more stable compared to the first two algorithms,but its optimization accuracy for large-scale examples is only 60%.As the number of maintenance tasks increases,the convergence speed of the improved BFO algorithm in this article does not increase significantly,and the optimization accuracy remains above 90%,reaching a maximum of 93%.In summary,the model constructed in this article is feasible.The improved BFO algorithm has fast convergence speed,strong optimization ability,and good stability,making it very suitable for solving the scheduling optimization of automotive electronic equipment maintenance personnel.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171