机构地区:[1]Key Laboratory of Material Chemistry for Energy Conversion and Storage,Ministry of Education,School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China [2]Key Laboratory of Green Chemical Engineering Process of Ministry of Education,Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education,School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,Hubei,China [3]The Institute of Scientific and Industrial Research(SANKEN),Osaka University,Ibaraki,Osaka,567-0047,Japan
出 处:《Chinese Journal of Catalysis》2025年第2期58-74,共17页催化学报(英文)
基 金:国家自然科学基金(62004143,21976063);湖北省重点研发计划(2022BAA084)。
摘 要:Light-driven CO_(2) reduction reaction(CO_(2)RR)to value-added ethylene(C2H4)holds significant promise for addressing energy and environmental challenges.While the high energy barriers for*CO intermediates hydrogenation and C–C coupling limit the C_(2)H_(4)generation.Herein,CuxP/g-C_(3)N_(4) heterojunction prepared by an in-situ phosphating technique,achieved collaborative photocatalytic CO_(2) and H2O,producing CO and C_(2)H_(4)as the main products.Notably,the selectivity of C_(2)H_(4)produced by CuxP/g-C_(3)N_(4) attained to 64.25%,which was 9.85 times that of CuxP(6.52%).Detailed time-resolution photoluminescence spectra,femtosecond transient absorption spectroscopy tests and density functional theory(DFT)calculation validate the ultra-fast interfacial electron transfer mechanism in CuxP/g-C_(3)N_(4) heterojunction.Successive*H on P sites caused by adsorbed H2O splitting with moderate hydrogenation ability enables the multi-step hydrogenation during CO_(2)RR process over CuxP/g-C_(3)N_(4).With the aid of mediated asymmetric Cu and P dual sites by g-C_(3)N_(4) nanosheet,the produced*CHO shows an energetically favorable for C–C coupling.The coupling formed*CHOCHO further accepts photoexcited efficient e–and*H to deeply produce C_(2)H_(4)according to the C^(2+)intermediates,which has been detected by in-situ diffuse reflectance infrared Fourier transform spectroscopy and interpreted by DFT calculation.The novel insight mechanism offers an essential understanding for the development of CuxP-based heterojunctions for photocatalytic CO_(2) to C^(2+)value-added fuels.作为石油化工的基本原料,乙烯C_(2)H_(4)广泛应用于水果成熟、药物合成、高科技材料生产和生态农业实践传统的C_(2)H_(4)生产通常是通过煤基化学得到。然而,由于原料稀缺、生产工艺复杂、成本高、选择性差以及碳排放等问题,煤基化学生产C_(2)H_(4)面临挑战.作为一种可持续、低成本的替代方案,光驱动二氧化碳还原反应(CO_(2)RR)正成为一种将温室气体CO_(2)转化为增值燃料的理想方法.然而,尽管在过去的几十年里,人们在光催化CO_(2)RR方面做了较多努力,但在实现其高活性和选择性方面仍存在巨大挑战.在大多数已报道的光催化CO_(2)RR中,由于C1产物在动力学上的优势,主要得到的通常为CO_(x)CH_(4),HCOOH,HCOH等C1产物.通过C-C耦合过程将CO_(2)转化为C^(2+)化合物,不仅需要进一步将*CO中间体氢化,更需要克服比形成“C-H”和“C-O”慢得多的动力学障碍和更高的能垒.因此,通过光驱动的CO_(2)RR将CO_(2)和H_(2)O直接高活性和选择性的转化为高能量密度的C_(2)H_(4)燃料仍是一个重大挑战.本文基于理论计算预测了CusP/g-C_(3)N_(4)异质结的光催化电子转移能力,及其CO_(2)和H,O分子的吸附能力,并以NaH,PO_(2)·H_(2)O为磷源,原位磷化Cu-g-C,N4制备了Cu_(x)P/g-C_(3)N_(4)异质结用于光催化CO,RR.通过X射线粉末衍射、红外光谱和拉曼光谱证实了得到的Cu_(x)P/g-C_(3)N_(4)中的Cu,P主要由Cu_(x)P组成.X射线光电子能谱结果进一步证明了Cu_(x)P与g-C_(3)N_(4)的成功杂化.扫描电镜、高分辨透射电镜、电感耦合等离子体-原子发射光谱、元素分析和氮气等温吸附-脱附曲线结果表明,原位磷化制备的Cu_(x)P/g-C_(3)N_(4)为Cu_(x)P纳米颗粒与g-C_(3)N_(4)纳米片紧密结合并均匀分布在其表面的多孔纳米材料。光催化CO_(2)RR活性实验结果表明,制备的Cu_(x)P/g-C_(3)N_(4)实现了协同光催化CO_(2)和H_(2)O转化生成CO和C_(2)H_(4)作为主要产物.值得�
关 键 词:Photocatalytic CO_(2) reduction C-C coupling Ethylene Cu_(x)P/g-C_(3)N_(4)heterojunction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...