Construction of Ni_(2)P/CoP interface for highly efficient electrolysis of urea-assisted hydrogen production at industrial current densities  

构建用于工业电流密度下高效电解尿素辅助制氢的Ni_(2)P/CoP界面催化剂

在线阅读下载全文

作  者:Borong Lu Chunmei Lv Ying Xie Kai Zhu Ke Ye Xiaojin Li 陆博荣;吕春梅;谢颖;朱凯;叶克;李晓锦(哈尔滨工程大学材料科学与化学工程学院,超轻材料与表面技术教育部重点实验室,黑龙江哈尔滨150001;中国科学院青岛生物能源与过程研究所,山东青岛266101;山东能源研究院,山东青岛266101;黑龙江大学化学与材料科学学院,黑龙江哈尔滨150080)

机构地区:[1]Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education,College of Materials Science and Chemical Engineering,Harbin Engineering University,Harbin 150001,Heilongjiang,China [2]Qingdao New Energy Shandong Laboratory,Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,Qingdao 266101,Shandong,China [3]Shandong Energy Institute,Qingdao 266101,Shandong,China [4]Key Laboratory of Functional Inorganic Material Chemistry of Ministry of Education,School of Chemistry and Materials Science,Heilongjiang University,Harbin 150080,Heilongjiang,China

出  处:《Chinese Journal of Catalysis》2025年第2期163-175,共13页催化学报(英文)

基  金:国家重点研发计划(2021YFB4001700);山东省自然科学基金-重大基础研究项目(ZR2022ZD10);青岛市自然科学基金(23-2-1-221-zyyd-jch);QIBEBT国际合作项目(QIBEBTICP202303);青岛新能源山东省实验室开放课题(QNESLOP202303)。

摘  要:Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability.尿素氧化反应(UOR)是尿素辅助电解水制氢的阳极反应,可以替代水电解中的阳极析氧反应,在低能耗制氢的同时对尿素废水进行降解.因此,近年来UOR作为一种具有前景的可持续清洁能源技术,受到了广泛关注.然而由于UOR存在复杂的反应过程,动力学缓慢以及催化剂稳定性较差等问题,需要开发具有高活性和高稳定性的催化剂.界面化学调控策略被认为是制备UOR催化剂的有效方法.然而,传统的界面催化剂通常受限于各组分本身的固有活性和不兼容性,而且界面间不规则的电荷分布和缓慢的电荷转移速率严重限制了UOR的活性.本文报道了一种Ni_(2)P/CoP界面催化剂,首先通过密度泛函理论(DFT)计算预测Ni_(2)P/CoP界面间电荷自发地从CoP转移到Ni_(2)P/CoP并且具有电荷调节能力,低Gibbs自由能的潜在反应决定步骤则证明了界面的构建可能提高其催化活性.随后通过水热、溶剂热和磷化法合成了Ni_(2)P/CoP催化剂.X射线衍射、扫描电镜和透射电镜等结果表明Ni_(2)P/CoP被成功合成,并且在高分辨透射电镜图中存在明显的晶界特征,结合DFT预测的功函数(Ф)和X射线吸收精细结构谱的分析结果,表明Ni_(2)P/CoP界面的成功构建.原位电化学阻抗谱、准原位X射线光电子能谱和准原位拉曼光谱结果表明,NizP/CoP通过界面间形成的内置电场,加速电荷定向转移,促进UOR过程.采用原位电化学光学显微镜评估了Ni_(2)P/CoP在析氢反应过程中的气体释放程度,结果表明,Ni_(2)P/CoP具有快速的气体逸出速率。分别在6molL^(-1)KOH+0.5mol L^(-1)尿素和尿液(6mol L^(-1)KOH)的电解液中,使用NizP/CoP同时作为阴极和阳极分别在尿素电解(UOR|HER)和人体尿液电解(HUORHER)体系中进行计时电位测试,在Ni_(2)P/CoP在500mAcm^(-2)电流密度下,分别以1.70和1.90V的较小恒定电池电压下持续工作120和50h,表现出高活性和稳定性.通过紫外-可见吸收光谱和�

关 键 词:Interface chemical strategy Theoretical predictions Advanced interface construction Directed charge transfer Urea oxidation reaction 

分 类 号:O64[理学—物理化学] O646[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象