机构地区:[1]State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,College of Chemistry,Xinjiang University,Urumqi 830017,Xinjiang,China [2]State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,Fujian,China
出 处:《Chinese Journal of Catalysis》2025年第2期203-218,共16页催化学报(英文)
基 金:国家自然科学基金(U2003307,22105163);新疆维吾尔自治区科技创新带头人(2022TSYCLJ0043);新疆维吾尔自治区自然科学基金(2021D01D09,2021D01C097);新疆维吾尔自治区重点实验室开放项目(2023D04032);新疆维吾尔自治区高等学校科研计划(XJEDU2021Y005).
摘 要:To address the high cost and limited electrochemical endurance of Pt-based electrocatalysts,the appropriate introduction of transition metal-based compounds as supports to disperse and anchor Pt species offers a promising approach for improving catalytic efficiency.In this study,sub-1 nm Pt nanoclusters were uniformly confined on NiO supports with a hierarchical nanotube/nanosheet structure(Pt/NiO/NF)through a combination of spatial domain confinement and annealing.The resulting catalyst exhibited excellent electrocatalytic activity and stability for hydrogen evolution(HER)and urea oxidation reactions(UOR)under alkaline conditions.Structural characterization and density functional theory calculations demonstrated that sub-1 nm Pt nanoclusters were immobilized on the NiO supports by Pt–O–Ni bonds at the interface.The strong metal-support interaction induced massive charge redistribution around the heterointerface,leading to the formation of multiple active sites.The Pt/NiO/NF catalyst only required an overpotential of 12 and 136 mV to actuate current densities of 10 and 100 mA cm^(-2) for the HER,respectively,and maintained a voltage retention of 96%for 260 h of continuous operation at a current density of 500 mA cm^(-2).Notably,in energy-efficient hydrogen production systems coupled with the HER and UOR,the catalyst required cell voltages of 1.37 and 1.53 V to drive current densities of 10 and 50 mA cm^(-2),respectively—approximately 300 mV lower than conventional water electrolysis systems.This study presents a novel pathway for designing highly efficient and robust sub-nanometer metal cluster catalysts.在载体上分散具有催化活性的金属纳米颗粒(NPs)是提高贵金属利用率、降低催化剂成本的有效策略.大量研究表明,当NPs尺寸缩小至亚纳米尺度时,表面原子在总原子数中的比例显著增加,这对于开发高效低廉的贵金属基催化剂具有重要意义.亚纳米簇(SNCs)因其丰富的金属-金属键及金属-载体键,能够优化反应物的吸附与解吸,并通过调控金属-载体相互作用提升催化性能.尽管SNCs催化剂具有优异的催化活性,但由于其较高的表面能和难以形成牢固的共价键,使其在恶劣的操作条件下极易团聚,从而降低其催化活性及稳定性.为了克服SNCs催化剂成本高和稳定性差的问题,引入过渡金属基化合物作为载体来分散和锚定SNCs催化剂,是实现其高效利用的可行方法.本文结合空间域限域和退火处理设计了一种Pt/NiO/NF催化剂,其中亚1nmPt纳米簇被锚定在具有1D/2D纳米管/纳米片分级结构的NiO载体上独特的1D/2D分级结构有助于亚1nm尺寸Pt纳米团簇的限域生长,既防止了它们在形成过程中向更大尺寸迁移,也阻止了其在析氢反应(HER)和尿素氧化反应(UOR)过程中从NiO载体上脱离.在亚1nmPt纳米团簇与NiO载体之间形成的强金属-载体相互作用(SMSI)诱导了大量电荷在Pt和NiO之间的异质界面周围重新分布,从而促使多活性位点形成以实现在碱性条件下对HER和UOR的较好的电催化活性和稳定性微观结构分析和理论计算结果表明,亚1 nm的Pt纳米簇通过Pt-O-Ni键牢固地锚定在NiO载体上,导致Pt中心的电子向NiO载体转移.这种电子转移不仅调节了Pt的电子结构增强了Pt位点的催化活性,还通过SMSI优化了NiO结构中Ni位点的催化活性.两者的协同作用促进了反应中间体在Pt/NiO/NF催化剂表面的吸附与解吸过程,从而显著增强了催化剂的本征催化.所制Pt/NiO/NF催化剂在HER中仅需12和136mV的过电位即可分别驱动10和100mAcm^(-2)�
关 键 词:Metal-support interaction Sub-nanometric cluster Hydrogen evolution reaction Size engineering Urea oxidation reaction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...