Stock Trend Prediction based on Wide & Deep Asymmetrical Bidirectional Legendre Memory Units  

在线阅读下载全文

作  者:Yong Wang Yisheng Li Zhiyu Xu 

机构地区:[1]School of Artificial Intelligence,Chongqing University of Technology,Chongqing 401135,China

出  处:《Data Intelligence》2024年第4期1014-1031,共18页数据智能(英文)

摘  要:Deep learning technology has been widely applied in the finance industry, particularly in the study of stock price prediction. This paper focuses on the prediction accuracy and performance of long-term features and proposes a Wide & Deep Asymmetrical Bidirectional Legendre Memory Units that captures long-term dependencies in time series through the immediate backpropagation of bidirectional recurrent modules and Legendre polynomial memory units. The proposed model achieves superior stock trend prediction capabilities by combining the memory and generalization capabilities of the Wide & Deep model. Experimental results on the daily trading data set of the constituents of the CSI 300 index demonstrate that the proposed model outperforms several baseline models in medium and long-term trend prediction.

关 键 词:Stock trend prediction Legendre memory unit Asymmetrical bidirectional recurrent neural network Wide&Deep model 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] F832.51[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象