检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yong Wang Yisheng Li Zhiyu Xu
机构地区:[1]School of Artificial Intelligence,Chongqing University of Technology,Chongqing 401135,China
出 处:《Data Intelligence》2024年第4期1014-1031,共18页数据智能(英文)
摘 要:Deep learning technology has been widely applied in the finance industry, particularly in the study of stock price prediction. This paper focuses on the prediction accuracy and performance of long-term features and proposes a Wide & Deep Asymmetrical Bidirectional Legendre Memory Units that captures long-term dependencies in time series through the immediate backpropagation of bidirectional recurrent modules and Legendre polynomial memory units. The proposed model achieves superior stock trend prediction capabilities by combining the memory and generalization capabilities of the Wide & Deep model. Experimental results on the daily trading data set of the constituents of the CSI 300 index demonstrate that the proposed model outperforms several baseline models in medium and long-term trend prediction.
关 键 词:Stock trend prediction Legendre memory unit Asymmetrical bidirectional recurrent neural network Wide&Deep model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249