Effective Tool Augmented Multi-Agent Framework for Data Analysis  

在线阅读下载全文

作  者:Xilin Zhang Zhixin Mao Ziwen Chen Shen Gao 

机构地区:[1]School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China [2]School of Computer Science and Engineering(School of Cyber Security),University of Electronic Science and Technology of China,Chengdu 611731,China

出  处:《Data Intelligence》2024年第4期923-945,共23页数据智能(英文)

摘  要:Data analysis tasks aim to provide insightful analysis for given data by incorporating background knowledge of the represented phenomenon, which in turn supports decision-making. While existing large language models(LLMs) can describe data trends, they still lag behind human data analysts in terms of integrating external knowledge and in-depth data analysis. Therefore, we propose a multi-agent data analysis framework based on LLMs. The framework decomposes the data analysis task into subtasks by employing three different agents. By empowering agents with the ability to utilize data search tools, the framework enables them to search for arbitrary relevant knowledge during the analysis process, leading to more insightful analysis. Moreover, to enhance the quality of the analysis results, we propose a multi-stage iterative optimization method that iteratively performs data analysis to form more in-depth conclusions. To validate the performance of our framework, we apply it to three real-world problems in the research development of higher education in China data. Experimental results demonstrate that our approach can achieve more insightful data analysis results compared to directly using LLMs alone.

关 键 词:Exploratory data analysis MULTI-AGENT Large language models 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象