基于H.265/HEVC的快速帧内编码研究  

Research on fast intraframe coding based on H.265/HEVC

在线阅读下载全文

作  者:马振华 贾华宇 罗飚 MA Zhenhua;JIA Huayu;LUO Biao(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Accelink Technologies Co.,Ltd.,Wuhan 430074,China)

机构地区:[1]太原理工大学电气与动力工程学院,山西太原030024 [2]武汉光迅科技股份有限公司,湖北武汉430074

出  处:《现代电子技术》2025年第8期51-55,共5页Modern Electronics Technique

基  金:国家自然科学基金项目:高速激光器芯片光学灾变损伤过程实时分析仪(62027819)。

摘  要:随着视频应用和新兴业务的快速发展,对视频编码速度和质量的要求也不断提高。为了降低H.265/HEVC的帧内编码复杂度,提出一种基于最有可能模式(MPM)的模糊搜索算法,通过减少搜索候选模式的数量来降低计算复杂度;同时提出一种简化编码单元划分过程的方法,利用相邻编码单元率失真代价计算的阈值,提前终止编码单元划分,避免了传统算法的遍历划分,提高了编码效率。实验结果表明,所提算法与HEVC传统模型比较,能够平均降低39.38%的编码时间,而码率只增加了1.62%,峰值信噪比差值仅降低0.085 dB。在保证视频质量的前提下,所提算法大幅降低了编码的复杂度。With the rapid development of video applications and quality businesses,the requirements for video encoding speed and quality are increasing constantly.In order to reduce the H.265/HEVC(high efficiency video coding)complexity of intra frame coding,a fuzzy search algorithm based on the most probable mode(MPM)is proposed,which can reduce computational complexity by reducing the number of candidate search patterns.At the same time,a method for simplifying the process of encoding unit division is proposed,which can use the threshold calculated by the rate distortion cost of adjacent encoding units to terminate encoding unit division in advance,avoiding the traditional algorithm's traversal division and improving encoding efficiency.The experimental results show that compared with the traditional HEVC model,the proposed algorithm can reduce the encoding time by an average of 39.38%,while the bit rate is only increased by 1.62%,and the peak signal-to-noise ratio difference is only reduced by 0.085 dB.Under the premise of ensuring video quality,the proposed algorithm can greatly reduce the encoding complexity.

关 键 词:HEVC 视频编码 帧内编码 最有可能模式 编码单元划分 率失真优化 

分 类 号:TN919.81-34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象