检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:栾庆磊 屈紫浩 郭继智 LUAN Qinglei;QU Zihao;GUO Jizhi(School of Mechanical and Electrical Engineering,Anhui Jianzhu University,Hefei 230601,China;Anhui Province Key Laboratory of Intelligent Manufacturing of Construction Machinery,Hefei 230601,China)
机构地区:[1]安徽建筑大学机械与电气工程学院,安徽合肥230601 [2]安徽省工程机械智能制造重点实验室,安徽合肥230601
出 处:《安徽建筑大学学报》2025年第1期51-61,共11页Journal of Anhui Jianzhu University
基 金:安徽省科技重大专项项目(202203a05020022)。
摘 要:现有多聚焦显微图像配准存在特征提取难度大、易受噪声干扰、时间复杂度高等问题。针对以上问题,提出一种基于自适应Canny聚焦区域分割算法与轻量化SuperPoint网络相融合的多聚焦显微图像配准算法。首先,使用自适应中值滤波与大津算法改进的Canny算法分割出相邻多聚焦显微图像的聚焦区域,在去除相邻帧共同背景区域的同时减小图像尺寸,以提高后续特征检测的精度和速度;接着,针对特征提取难度大、时间复杂度高的问题,使用轻量化的SuperPoint网络提取特征点,针对原始SuperPoint网络的VGG架构编码层参数量多、计算量大的缺点,使用GhostNetV2代替原本的VGG编码层,在保证精度的同时降低了计算量和参数量;然后,使用K最近邻算法对特征点进行匹配。最后,使用退化采样一致性算法(DEGENSAC)代替普通的随机采样一致性算法(RANSAC)去除误匹配并计算单应矩阵对多聚焦显微图像进行配准。经过实验验证,所提算法相比于其他算法拥有更高匹配精度和速度,相比于原始SuperPoint,参数量、计算量和模型大小分别下降了51.69%、88.04%、50.07%,FPS增加了3倍左右。Considering the feature extraction,noise susceptibility,and high time complexity in the multi-focused microscopic image registration,a multi-focus microscope image registration algorithm based on the fusion of adaptive Canny focus area segmentation algorithm and lightweight SuperPoint network is proposed.Firstly,the Canny algorithm is improved by adaptive median filtering and Otsu algorithm to segment the focusing region of adjacent multi-focused microscopic image,which reduces the image size while removing the common background region of adjacent frames to improve the accuracy and speed of subsequent feature detection.Next,a lightweight SuperPoint network is used to address the difficulty and high time complexity of feature extraction,and GhostNetV2 instead of the original VGG coding layer is used to deal with a large number of parameters in the coding layer of the VGG architecture and a large amount of computation of the original SuperPoint network,which ensures the accuracy and reduces the amount of computation and the number of pa-rameters at the same time.Then,the feature points are matched using the K-nearest neighbour algorithm.Finally,the Degenerate Sampling Consistency Algorithm(DEGENSAC)is used instead of the ordinary Random Sampling Consistency Algorithm(RANSAC)to remove the false matches and calculate the Homography matrix for the multi-focused microscopy image registration.Through the experimental validation,the proposed algorithm has higher matching accuracy and speed compared with other algorithms,and compared with the original SuperPoint,the number of parameters,computation amount and model size decreased by 51.69%,88.04%and 50.07%,respectively,and the FPS increased by about 3 times.
关 键 词:多聚焦显微图像 焦点分割 SuperPoint GhostNetV2
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7