端到端智能视频压缩技术及其在无人机中的应用  

End⁃to⁃End Video Compression Technology and Its Application in Unmanned Aerial Vehicles

在线阅读下载全文

作  者:叶枫 董凡可 贾川民 YE Feng;DONG Fanke;JIA Chuanmin(Wangxuan Institute of Computer Technology,Peking University,Beijing 100871,China)

机构地区:[1]北京大学王选计算机研究所,北京100871

出  处:《数据采集与处理》2025年第2期303-319,共17页Journal of Data Acquisition and Processing

基  金:北京市自然科学基金(4252003);国家自然科学基金(62371008)。

摘  要:多媒体视觉表示与传输领域正在面临深刻变革,端到端优化的智能视频编解码技术是激发这一变革的驱动力。以无人机(Unmanned aerial vehicle,UAV)视频为代表的新兴视频内容压缩编码技术进一步促进了核心技术发展和应用场景创新。聚焦于端到端智能视频编解码技术及其在无人机视频编码的初探,提出了一种基于分层双向参考结构的视频编码方法,解决模型在运动表示效率和预测编码精度方面的不足。有针对性地设计提出了参数共享的运动编解码器、双向缩放运动表示方法以及可信运动建模技术,显著提升无人机视频压缩的率失真压缩性能,优于传统视频编码标准H.266/VVC。为智能视频编码关键技术发展和应用提供了新思路,未来有望在无人机视觉感知等相关领域发挥重要作用。The field of multimedia visual representation and transmission is undergoing profound transformation,with end-to-end optimized intelligent video coding technologies serving as the driving force.The compression of emerging video content represented by unmanned aerial vehicle(UAV)videos has further stimulated the development of core technologies and innovation in application scenarios.Focusing on end-to-end video coding technology and its initial exploration in UAV video coding,this study proposes a hierarchical bi-directional reference structure-based video coding method that addresses the shortcomings of existing models in motion representation efficiency and predictive coding accuracy.The targeted design introduces a parameter-shared motion codec,a bi-directional scaled motion representation method,and credible motion modeling technology,significantly improving the rate-distortion performance of UAV video compression and outperforming traditional video coding standards such as H.266/VVC.This work provides novel insights for the advancement of key intelligent video coding technologies and their practical applications,demonstrating promising potential for future deployment in UAV visual perception and related domains.

关 键 词:端到端视频编码 编码标准 分层双向预测 无人机视频 

分 类 号:TP37[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象