检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王方林 苏雪平 雷一航 WANG Fanglin;SU Xueping;LEI Yihang(Xi’an Engineering University,School of Electronic Information,Xi’an 710000,Shaanxi)
机构地区:[1]西安工程大学,电子信息学院,陕西西安710000
出 处:《长江信息通信》2025年第2期30-33,共4页Changjiang Information & Communications
基 金:陕西省自然科学基础研究计划(2024JC-YBMS-455);西安市碑林区应用技术研发储备工程项目(GX2405);陕西高校青年创新团队;陕西省教育厅科研计划项目,24JP071。
摘 要:随着神经机器翻译技术的不断发展,低资源语言的翻译需求迫切增加。然而,现有的翻译模型在处理低资源语言时往往面临翻译质量不高及推理时间过长的这些问题,文章提出了一种基于LSSD策略的NAT-Transformer算法,在预处理部分,通过获取双语平行语料并应用BPE技术,将数据映射到通用向量空间。在预训练部分,采用了多头自注意力机制以及编码器和解码器堆栈结构,从而能够有效地捕捉序列中的依赖关系。最终得到翻译预测。在这个阶段,我们也加入了LSSD(Language-Specific Self-Distillation)策略,通过SGD(随机梯度下降)进行梯度优化,以提升模型在特定语言上的性能。最后,在微调部分,利用预训练模型进一步调整模型参数。实验结果证明,基于LSSD策略的NAT-Transformer算法在BLEU分数上比基线模型提高了3个BLEU值左右,表现出了较好的应用潜力与性能。As neural machine translation technology continues to advance,the demand for translating low-resource languages is rapidly increasing.However,existing translation models often face challenges such as low translation quality and long inference time when dealing with low-resource languages.To address these issues,this paper proposes an NAT-Transformer algorithm based on the LSSD strategy.In the preprocessing phase,bilingual parallel corpora are obtained and BPE is applied to map the data into a common vector space.In the pre-training phase,a multi-head self-attention mechanism and encoder-decoder stack structure are used to effectively capture dependencies within sequences.Ultimately producing translation predictions.At this stage,we also incorporate the LSSD(Language-Specific Self-Distillation)strategy,optimizing gradients through SGD(stochastic gradient descent)to improve the model’s performance for specific languages.Finally,in the fine-tuning phase,use the pre-trained model to further adjust the model parameters.Experimental results demonstrate that the NAT-Transformer algorithm incorporating the LSSD strategy achieves approximately 3 BLEU points higher than the baseline model,showing promising potential and performance.
关 键 词:低资源机器翻译 NAT-Transformer 自蒸馏策略
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248