检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王星星 魏晓梦 WANG Xingxing;WEI Xiaomeng(Henan Mechanical&Electrical Vocational College,Henan Zhengzhou 451100,China)
出 处:《长江信息通信》2025年第2期46-48,共3页Changjiang Information & Communications
摘 要:针对物联网网络节点流量预测的挑战,提出了基于改进蜂群算法的快速预测方法。该方法通过计算初始流量时序长度、构建流量时序权重矩阵,并引入全局最优解和自适应惯性参数的改进蜂群算法。实验结果显示,该方法在MAE、RMSE上表现最优(分别为65.2490和73.6583),且R2值最接近1(0.9969),验证了其预测的高准确性。该方法有效应对了网络流量动态性和复杂性,提升了预测精度。A fast prediction method based on an improved bee colony algorithm is proposed to address the challenge of predicting node traffic in the Internet of Things network.This method calculates the initial flow time series length,constructs a flow time series weight matrix,and introduces an improved bee colony algorithm with global optimal solution and adaptive inertia parameters.The experimental results showed that the method performed the best on MAE and RMSE(65.2490 and 73.6583,respectively),and the R2 value was closest to 1(0.9969),verifying its high accuracy in prediction.This method effectively addresses the dynamic and complex nature of network traffic,improving prediction accuracy.
关 键 词:改进蜂群算法 物联网 网络节点 预测方法 权重矩阵
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200