检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于海国 杨波 肖挺松 李丹[2] YU Haiguo;YANG Bo;XIAO Tingsong;LI Dan(China Railway Third Bureau Group East China Construction Co.,Ltd.,Nanjing,Jiangsu 21115School of Civil Engineering and Architecture,East China Jiaotong University,Nanchang,Jiangxi 330013)
机构地区:[1]中铁三局集团华东建设有限公司,江苏南京211153 [2]华东交通大学土木与建筑学院,江西南昌330013
出 处:《长江信息通信》2025年第2期188-191,195,共5页Changjiang Information & Communications
摘 要:受隧道探测环境影响,隧道超前地质预报过程中探地雷达信号数据具有噪声干扰特征,影响了地下病害的定位探测以及病害位置的识别。为有效压制隧道超前探测数据中低频特征噪声,充分利用最小二乘反褶积提升资料解释质量的优势,将罚函数法引入数据处理中,形成基于反褶积处理的隧道探测信号去噪方法。通过单道正演模拟数据去噪证明该方法可以有效去除低频噪声,可以满足实时显示等要求,在此基础上将该方法应用于实际隧道探测数据中,该方法能在去除干扰的同时很好的保留有效信号,进一步提升了图像对比度,实际应用证明了该方法进行超前探测数据处理具有有效性和实用性。Ground penetrating radar is commonly used to predict tunnel geology.However,it is often disturbed by the construction environment during the detection process;As a result,the depth of detection interpretation and the recognition of disease location are affected.In order to effectively suppress the noise with low-frequency characteristics in tunnel geological prediction,and make full use of the advantage of least squares deconvolution to improve the quality of data interpretation,the penalty function method is introduced into data processing to form a tunnel detection signal denoising method based on Deconvolution processing.Through single channel forward simulation data denoising,it has been proven that this method can effectively remove low-frequency noise and meet the requirements of real-time display.Based on this,this method is applied to actual tunnel detection data.This method can effectively preserve effective signals while removing interference,further improving image contrast.Practical applications have proven that this method has effectiveness and practicality in advanced detection data processing.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49