低维材料的太赫兹极化激元光子学研究进展(特邀)  

Research progress on terahertz polaritons in low-dimensional materials(invited)

在线阅读下载全文

作  者:王庆 杨晓宇 李鹏伟 陈舒 WANG Qing;YANG Xiaoyu;LI Pengwei;CHEN Shu(Terahertz Technology Innovation Research Institute,School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院太赫兹技术创新研究院,上海200093

出  处:《红外与激光工程》2025年第3期72-92,I0001,共22页Infrared and Laser Engineering

基  金:国家自然科学基金项目(62422510,U24A20226,62301319);上海市科委项目(23010503400,23ZR1443500)。

摘  要:太赫兹技术已在材料检测、生物医学、通讯、天文等诸多领域展现出重要应用优势,但它在高性能太赫兹光电器件(包括太赫兹室温探测器、传感器、调制器等)方面仍面临瓶颈。太赫兹光与电子、声子耦合形成的极化激元具有深亚波长束缚、高光场限域、高局域场增强和强吸收等特点,有望解决太赫兹光电器件瓶颈。特别是,当极化激元与低维材料(如:石墨烯、Ag_(2)Te)相结合,因低维材料具有纳米级厚度、可调控的载流子浓度以及丰富的晶格结构等特点,能够进一步放大极化激元特性,为解决太赫兹科学与技术领域难题提供更多的机遇。文中从传统金属和新型低维材料中的等离极化激元和声子极化激元出发,简要介绍了极化激元的概念和特性,进一步结合探测太赫兹极化激元的主流技术,总结了基于低维材料的太赫兹极化激元的最新研究进展,并对该研究领域进行展望。Significance Terahertz(THz)waves,situated between microwaves and infrared radiation,own strong penetration capabilities,low photon energy,and high biological safety,demonstrating significant application potential in fields such as material detection,biomedicine,communications,and astronomy.However,the advancement of THz technology still encounters numerous challenges,particularly in the development of efficient radiation sources,detectors,and ultra-sensitive detection and modulation devices.Polaritons,which are quasiparticles formed by the coupling of light with electrons and phonons in matter,can enhance the interaction between light and matter in the THz frequency range,offering promising solutions to the bottlenecks in THz optoelectronic devices.Low-dimensional materials,such as graphene,Bi_(2)Se_(3),and Ag_(2)Te,with their nanoscale thickness,tunable carrier concentration,and rich lattice structures,exhibit polaritons with low loss,high optical field confinement,enhanced optical fields,and high tunability.These characteristics provide additional opportunities to address the challenges in the field of THz science and technology.Progress Since its discovery in 2004,graphene has been shown to support plasmon polaritons from massless Dirac carriers.Using methods like gate electrodes and chemical doping,these polaritons can operate in the IR to THz range.In 2011,researchers first measured plasmonic resonances in far-IR to THz frequencies in graphene ribbons,confirming their high field confinement and tunability.Later,in 2016,THz near-field microscopy with photocurrent detection enabled real-space imaging of graphene acoustic plasmon polaritons(APPs),revealing their superior field localization and compression over optical modes.Leveraging APPs enables further exploration of non-local quantum effects(Fig.5).Dirac carriers are not exclusive to graphene but are also widely present in low-dimensional topological insulator materials,such as BizSes.THz plasmon polaritons in Bi2Ses were first reported in 2013 and was clai

关 键 词:太赫兹科学与技术 极化激元 低维材料 扫描近场光学显微技术 太赫兹光电器件 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象