多阅片者多病例设计在人工智能辅助阅片影像诊断试验评价中的应用  

Application of multi-reader multi-case design in evaluating artificial intelligence-assisted imaging diagnostic trials

在线阅读下载全文

作  者:宛慧琴 向蔓 潘喆敏 秦婴逸[2] 何倩[2] 贺佳 WAN Huiqin;XIANG Man;PAN Zhemin;QIN Yingyi;HE Qian;HE Jia(School of Medicine,Tongji University,Shanghai 200092,China;Department of Military Health Statistics,Faculty of Medical Services,Naval Medical University(Second Military Medical University),Shanghai 200433,China)

机构地区:[1]同济大学医学院,上海200092 [2]海军军医大学(第二军医大学)卫生勤务学系军队卫生统计学教研室,上海200433

出  处:《海军军医大学学报》2025年第4期504-510,共7页Academic Journal of Naval Medical University

基  金:上海市卫生健康委员会新兴交叉领域研究专项(2022JC011)。

摘  要:目的使用多阅片者多病例(MRMC)设计评价人工智能(AI)辅助阅片影像诊断试验的临床效能,以期为影像诊断试验的临床评价提供科学依据。方法采用影像诊断试验中广泛应用的MRMC设计,详细阐述了MRMC设计中Obuchowski-Rockette(OR)法的模型构建及其检验方法。实例研究共收集了3家医院200例受试者的CT影像资料,其中133例为肋骨骨折患者,68例为非肋骨骨折患者,由3位阅片医师对所有CT影像进行判读。分析在2种阅片方式(医师+AI辅助阅片、医师独立阅片)下肋骨骨折检出的AUC值、灵敏度和特异度的差异。结果AI辅助阅片组的AUC值为0.958,医师独立阅片组的AUC值为0.902,两组AUC值差异有统计学意义(P<0.001)。AI辅助阅片组总体的灵敏度为0.970,特异度为0.946;医师独立阅片组的灵敏度为0.838,特异度为0.966;两组灵敏度差值为0.131(95%CI 0.091~0.171),特异度差值为-0.020(95%CI-0.059~0.020),说明AI辅助阅片与医师独立阅片的灵敏度差异有统计学意义而特异度差异无统计学意义。两组的阳性似然比均大于10,阴性似然比均小于0.2,阳性预测值都接近1,说明AI辅助阅片影像诊断试验的诊断准确性高。结论AI辅助阅片在提高诊断效能方面有显著优势,不仅可以提高肋骨骨折诊断的准确性和检出率,还能提高医师工作效率,优化医院服务。Objective To evaluate the clinical efficacy of artificial intelligence(AI)-assisted imaging diagnostic trials using multi-reader multi-case(MRMC)design,so as to provide a scientific basis for clinical evaluation of imaging diagnostic trials.Methods The MRMC design,widely used in imaging diagnostic trials,was adopted in this study.The Obuchowski-Rockette(OR)method of MRMC design was detailed,including model construction and test methods.A case study was conducted,collecting imaging data of 200 subjects from 3 hospitals,with 133 cases of rib fractures and 68 cases of non-rib fractures.Three radiologists reviewed all CT images of the subjects.The area under curve(AUC)value,sensitivity and specificity in detecting rib fractures between 2 reading modalities(radiologists with AI assistance vs radiologists reading independently)were compared.Results The AI-assisted reading group had an AUC value of 0.958,while the radiologist-independent reading group had an AUC value of 0.902,showing a significant difference(P<0.001).The overall sensitivity and specificity of the AI-assisted reading group were 0.970 and 0.946,respectively;while the sensitivity and specificity of the radiologist-independent reading group were 0.838 and 0.966,respectively.The difference of sensitivity between groups was 0.131(95%confidence interval[CI]0.091-0.171),and the difference of specificity was-0.020(95%CI-0.059-0.020),indicating a significant difference in sensitivity but not in specificity between AI-assisted and radiologist-independent reading groups.Both groups had positive likelihood ratios(+LR)greater than 10 and negative likelihood ratios(-LR)less than 0.2,with positive predictive values approaching 1,suggesting that the diagnostic accuracy of the AI-assisted imaging diagnostic trials was high.Conclusion The AI-assisted reading method demonstrates a significant advantage in enhancing diagnostic efficiency,not only improving the diagnostic accuracy and detection rate of rib fractures,but also improving the work efficiency of radiologists and

关 键 词:人工智能 多阅片者多病例设计 Obuchowski-Rockette法 肋骨骨折 诊断准确性 

分 类 号:R445[医药卫生—影像医学与核医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象